CRITERIA FOR ABSOLUTE CONVERGENCE OF FOURIER SERIES

NICOLAS ARTÉMIADIS

ABSTRACT. Let $f \in L^1(T)$. Define f_a by $f_a(x) = f(x + a)$. Then the Fourier series of f is absolutely convergent if and only if there exists a Lebesgue point a for f such that both sequences $\langle \text{Re } \hat{f}_a(n) \rangle_{n \in \mathbb{Z}}$ and $\langle \text{Im } \hat{f}_a(n) \rangle_{n \in \mathbb{Z}}$ belong to l^1. The theorem remains true if the sentence "there exists a Lebesgue point a for f" is replaced by "there is $a \in \mathbb{R}$ such that f is essentially bounded in some neighborhood of a".

1. Introduction. One of the primary objectives in the theory of Fourier series is the study of the class \mathcal{C}, that is the class of all Lebesgue integrable complex-valued functions on the circle T (the additive group of the reals modulo 2π) whose Fourier series are absolutely convergent. We denote by A the collection of all continuous complex-valued functions on T with absolutely convergent Fourier series. Clearly $A \subset \mathcal{C}$, and every function in \mathcal{C} is equal almost everywhere to a function in A. An approach to studying \mathcal{C} or A (for which the reader is referred to [1]) has concentrated attention on seeking conditions on a function f, which are sufficient or necessary, that ensure that $f \in \mathcal{C}$. It seems that there is no complete solution to the problem of characterizing the elements of \mathcal{C} directly in terms of their functional values. The following theorem is well known [1, p. 9]: Every continuous function on T with nonnegative Fourier coefficients belongs to A. Every function in A is a linear combination of continuous functions on T with nonnegative Fourier coefficients.

In this paper we first give an easy generalization of this theorem by requiring that the Fourier coefficients be confined in a certain region of the complex plane instead of lying all on the positive x-axis. This is the content of Theorem 1. Next we prove our main results given by Theorems 2 and 4 of §3. Each of these theorems provides a necessary and sufficient condition for a function to be in the class \mathcal{C}.

Received by the editors April 24, 1974.

Copyright © 1975, American Mathematical Society

179

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
2. Notation. \(\mathbb{R} \) is the real line. \(L^1(\mathbb{T}) \) is the space of all Lebesgue integrable complex-valued functions on \(\mathbb{T} \). For each \(f \in L^1(\mathbb{T}) \) the numbers
\[
\hat{f}(n) = \frac{1}{2\pi} \int_{\mathbb{T}} f(t) e^{-int} dt \quad (n \in \mathbb{Z})
\]
are the Fourier coefficients of \(f \), where \(\mathbb{Z} \) is the group of integers. As usual we call \(\sum_{n \in \mathbb{Z}} \hat{f}(n)e^{int} \) the Fourier series of \(f \). Let \(f \) be Lebesgue integrable on an interval \([a, b) \subset \mathbb{R}\) and let \(x \in (a, b) \). Then \(x \) is called a Lebesgue point for \(f \) if and only if
\[
\lim_{h \to 0^+} \frac{1}{h} \int_{0}^{h} |f(x + t) + f(x - t) - 2f(x)| dt = 0.
\]
The set of all Lebesgue points for \(f \) is called the Lebesgue set for \(f \). If \(f \in L^1(\mathbb{T}) \) then the complement of the Lebesgue set for \(f \) is of Lebesgue measure zero. If \(f \) is continuous at \(x \), then \(x \) is a Lebesgue point for \(f \).

The space of all infinite sequences of complex numbers \(\langle c_n \rangle \), such that \(\sum_{n \in \mathbb{Z}} |c_n| < +\infty \), is denoted by \(l^1 \).

For \(a \in \mathbb{R} \), \(f_a \) is defined by \(f_a(t) = f(t + a) \), \(a^+ = \max(a, 0) \) and \(a^- = \max(-a, 0) \).

As usual \(\Re z \) and \(\Im z \) mean the real and imaginary parts of \(z \) respectively.

3. The main theorems.

Theorem 1. Let \(f \) be a continuous complex-valued function on \(\mathbb{T} \) with the property: there is \(\alpha \in \mathbb{R} \) such that \(\alpha \leq \arg \hat{f}(n) \leq \alpha + \pi/2 \) \((n \in \mathbb{Z})\). Then \(f \in A \). Also every \(f \in A \) is a linear combination of continuous functions on \(\mathbb{T} \) with the above property.

Proof. The second part of the theorem is obvious. To prove the first part, observe that we may assume \(\alpha = 0 \). For if \(\alpha \neq 0 \) then we consider the function \(g(x) = f(x)e^{-ia} \) for which \(0 \leq \arg \hat{g}(n) \leq \pi/2 \). Next set
\[
F(x) = \frac{f(x) + \overline{f(-x)}}{2}, \quad G(x) = \frac{f(x) - \overline{f(-x)}}{2i}.
\]
Clearly both \(F \) and \(G \) are continuous. Also
\[
\hat{F}(n) = \Re \hat{f}(n) \geq 0, \quad \hat{G}(n) = \Im \hat{f}(n) \geq 0.
\]
It follows from the theorem stated in the introduction that \(F \in A \), \(G \in A \) so that \(f \in A \).

Theorem 2. Let \(f \in L^1(\mathbb{T}) \). Then \(f \in \mathcal{A} \) if and only if the following condition is satisfied:

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
"there is a Lebesgue point \(\alpha \) for \(f \) such that both sequences
\[\langle \Re \hat{f}_n(n) \rangle_{n \in \mathbb{Z}}, \quad \langle \Im \hat{f}_n(n) \rangle_{n \in \mathbb{Z} \} \text{ belong to } l^1."

Proof. Suppose \((*)\) is satisfied. We first consider the case \(\alpha = 0. \) For
\(N \) a positive integer, set
\[\sigma_N(t) = \sum_{n=-N}^{N} (1 - |n|/N) \hat{f}(n)e^{int}. \]

By a theorem of Lebesgue we know that if \(t \) is a Lebesgue point for \(f \) then
\[\lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} f(n) = f(t). \]

Hence
\[\lim_{N \to \infty} \sigma_N(0) = \lim_{N \to \infty} \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) \hat{f}(n) = f(0) = \text{finite}. \]

Also
\[\hat{f}(0) = \sum_{n=-N}^{N} (1 - |n|/N) \Re \hat{f}(n) + i \sum_{n=-N}^{N} (1 - |n|/N) \Im \hat{f}(n) \]
\[= \sum_{n=-N}^{N} (1 - |n|/N) (\Re \hat{f}(n))^+ + i \sum_{n=-N}^{N} (1 - |n|/N) (\Im \hat{f}(n))^+ \]
\[\quad - \sum_{n=-N}^{N} (1 - |n|/N) (\Re \hat{f}(n))^- - i \sum_{n=-N}^{N} (1 - |n|/N) (\Im \hat{f}(n))^- \]

If we let \(N \to \infty \) then the \(\sigma_N(0) \) are uniformly bounded because of (1) while
the last two sums of the right-hand side of (2) are bounded (more precisely
they converge) because of the hypothesis \((*)\). Therefore,
\[\lim_{N \to \infty} \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) \Re \hat{f}(n) < +\infty, \quad \lim_{N \to \infty} \sum_{n=-N}^{N} \left(1 - \frac{|n|}{N}\right) \Im \hat{f}(n) < +\infty. \]

Since the Cesàro summability of a series with nonnegative terms implies the
convergence of the series, it follows that \(\sum_{n \in \mathbb{Z}} \hat{f}(n) < +\infty: \) i.e., \(f \in \overset{\circ}{C} \).

Next assume \(\alpha \neq 0. \) Then 0 is a Lebesgue point for \(f_{\alpha} \) so that by
the result that we just proved we have \(\sum_{n \in \mathbb{Z}} |\hat{f}_\alpha(n)| < +\infty. \) Since \(\hat{f}_\alpha(n) = e^{i\alpha n}\hat{f}(n) \)
we have \(f \in \overset{\circ}{C}. \) Now suppose \(f \in \overset{\circ}{C} \) and let \(\alpha \) be any Lebesgue point for \(f. \)
Then
\[\sum_{n \in \mathbb{Z}} |\hat{f}(n)| = \sum_{n \in \mathbb{Z}} |e^{i\alpha n}\hat{f}(n)| = \sum_{n \in \mathbb{Z}} |\hat{f}_\alpha(n)| < +\infty \]
and condition \((*)\) is clearly satisfied. \(\Box \)

Corollary 3. Let \(f \in L^1(T) \). Then \(f \) is equal almost everywhere to a
linear combination of positive definite functions if and only if condition (*) is satisfied.

Proof. This follows from Kahane's characterization of A (see §1) and Herglotz's characterization of continuous functions with nonnegative coefficients as positive definite [2, p. 19].

Theorem 4. Let $f \in L^1(T)$. Then $f \in \mathfrak{A}$ if and only if the following condition is satisfied

"f is essentially bounded in a neighborhood of some real number a, and both sequences $\langle (R_n f(n))^\sim \rangle_{n \in \mathbb{Z}}$, $\langle \langle f_m n(n) \rangle \rangle_{n \in \mathbb{Z}}$ belong to l^1".

Proof. Suppose that condition (**) is satisfied. We first consider the case $a = 0$. Using the notation of Theorem 2 we have:

$$\sigma_N(t) = \frac{1}{2\pi} \int_T f(y) K_N(t - y) dy$$

where

$$K_N(y) = \sum_{n = -N}^{N} \left(1 - \frac{|n|}{N} \right) e^{iny} = \frac{\sin^2(N/2)y}{N \sin^2(y/2)}.$$

Next assume $|f(y)| \leq M$ a.e. for $y \in (-h, h)$ ($h > 0$). We have

$$\sigma_N(0) = \frac{1}{2\pi} \int_{-h}^{h} f(y) K_N(y) dy + \frac{1}{2\pi} \int_{-\pi}^{\pi} \left(\right) + \frac{1}{2\pi} \int_{-h}^{h} \left(\right).$$

Observe that the first of the last three integrals is bounded by M, and that the other two converge to zero as $N \to \infty$ by the Lebesgue dominated convergence theorem. Therefore the $\sigma_N(0)$ are uniformly bounded. From this point on we proceed exactly as in the proof of Theorem 2, by letting $N \to \infty$ in (2). Thus $f \in \mathfrak{A}$. Now suppose $a \neq 0$. Then f_a is essentially bounded in a neighborhood of the origin so that by the previous result, $f_a \in \mathfrak{A}$. Since $f(n) = e^{-ina} f_a(n)$ we have $f \in \mathfrak{A}$. Next assume $f \in \mathfrak{A}$. Then f is essentially bounded on T and condition (**) is clearly satisfied.

Corollary 5. Let $f \in L^1(T)$. Then f is equal almost everywhere to a linear combination of positive definite functions if and only if (**) is satisfied. □

Remark. Call a numerical series $\Sigma(a_n + ib_n)$ "one-sidedly absolutely..."
convergent' if (at least one of Σa_n^+ or Σa_n^-) and (at least one of Σb_n^+ or Σb_n^-) is finite. The main theorems (2 and 4) are interesting because it is possible for $\Sigma e^{i\lambda} c_n$ to be one-sidedly absolutely convergent even when Σc_n is not. For example, $c_{2n} = 1 + i$, $c_{2n+1} = 1 - i$, $n = 0, 1, 2, \cdots$, and $\lambda = \pi/4$.

REFERENCES

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS 62901

Current address: Department of Mathematics, University of Patras, Patras, Greece