AN EVERYWHERE DIVERGENT FOURIER-WALSH
SERIES OF THE CLASS \(L(\log^+ \log^+ L)^{1-\epsilon} \)

K. H. MOON

ABSTRACT. Let \(\Phi \) be a function satisfying (a) \(\Phi(t) \geq 0 \), convex and increasing; (b) \(\Phi(t^{1/2}) \) is a concave function of \(t \), \(0 \leq t < \infty \); and (c) \(\Phi(t) = o(t \log \log t) \) as \(t \to \infty \). We construct a function in the class
\[
\Phi(L) = \{ f \in L(0, 1): \int_0^1 \Phi(|f(x)|) dx < \infty \}
\]
whose Fourier-Walsh series diverges everywhere.

It is known that there exists a function in the class \(L(\log^+ \log^+ L)^{1-\epsilon} \) for \(\epsilon > 0 \) whose trigonometric series diverges almost everywhere [1]. Let \(\Phi \) be a function satisfying
(a) \(\Phi(t) \geq 0 \), convex and increasing in \(0 < t < \infty \),
(b) \(\Phi(t^{1/2}) \) is a concave function of \(t \), \(0 < t < \infty \), and
(c) \(\Phi(t) = o(t \log \log t) \) as \(t \to \infty \).

For the Walsh system, we will construct a function in the class
\[
\Phi(L) = \{ f \in L(0, 1): \int_0^1 \Phi(|f(x)|) dx < \infty \}
\]
whose Fourier-Walsh series diverges everywhere by refining Stein's construction [3] of a function in \(L(0, 1) \) with almost everywhere divergent Fourier-Walsh series.

We recall the definition of the Walsh system in the Paley enumeration. The Rademacher functions \(r_n(x) \) are defined by
\[
r_0(x) = 1 \quad (0 < x < \frac{1}{2}), \quad r_0(x) = -1 \quad (\frac{1}{2} \leq x < 1),
\]
(1)
\[
r_0(x + 1) = r_0(x), \quad r_n(x) = r_0(2^n x) \quad (n = 1, 2, \ldots).
\]

For each positive integer \(n \), there is a unique representation of the form
\[
n = \sum_{j=0}^{\infty} \epsilon_j 2^j, \quad \text{where } \epsilon_j = 0 \text{ or } 1.
\]
The Walsh functions in the Paley enumeration are then given by
\[w_0(x) = 1, \quad w_n(x) = \prod_{j=0}^{\infty} [r_j(x)]^j. \]

Let \(x \) be any real number in \((0, 1)\). Then we have a unique representation of the form \(x = \sum_{n=1}^{\infty} x_n 2^{-n} \) with infinitely many \(x_n \neq 0 \), where \(x_n = 0 \) or 1.

We define
\[
(3) \quad x \dagger y = \sum_{n=1}^{\infty} |x_n - y_n| 2^{-n}
\]
where \(x = \sum_{n=1}^{\infty} x_n 2^{-n}, y = \sum_{n=1}^{\infty} y_n 2^{-n} \), \(x_n, y_n = 0 \) or 1 and the operation \(\dagger \) is called dyadic addition (see Fine [2]).

We denote the Dirichlet kernel and the partial sum of Fourier series of \(f(x) \) with respect to the Walsh functions in the Paley enumeration by
\[
(4) \quad \begin{align*}
D_n(x) &= \sum_{j=0}^{n-1} w_j(x), \\
S_n f(x) &= \sum_{j=0}^{n-1} C_j(f) w_j(x) = \int_0^1 f(t) D_n(x + t) dt,
\end{align*}
\]
where \(C_j = C_j(f) = \int_0^1 f(t) w_j(t) dt \) is the \(j \)th Fourier coefficient of \(f \).

The Lebesgue constant \(L_n \) is given by
\[
(5) \quad L_n = \int_0^1 |D_n(t)| dt.
\]
It is well known (see Fine [2]) that
\[
(6) \quad \lim_{n \to \infty} \sup \left(\frac{L_n}{\log n} \right) \geq \alpha > 0.
\]

An interval \(I \) with the length \(2^{-n} \) is called a dyadic interval if the \((n-1)\)th Rademacher function \(r_{n-1}(t) \) is constant on \(I \).

First of all we want to prove the following lemma, from which our main theorem follows. A part of the proof of this lemma will use a technique of E. M. Stein in [3].

Lemma. For any fixed positive integer \(n \), there exists a set \(E_n \) such that
\[
\begin{align*}
(\text{i}) \quad & m(E_n) = 2^{-2N}, \quad \text{where} \quad 2^{N-1} \leq n < 2^N, \\
(\text{ii}) \quad & C_k(\mathcal{X}E_n(t)) = \int_0^1 \mathcal{X}E_n(t) w_k(t) dt = 0 \quad \text{if} \quad 0 < k < 2^N \quad \text{or} \quad k \geq 2^{N+2N}, \\
(\text{iii}) \quad & M\mathcal{X}E_n(x) = \sup_{n > 1} |S_n \mathcal{X}E_n(x)| \geq \frac{1}{2} L_n m(E_n),
\end{align*}
\]
where \(m(A) \) and \(\mathcal{X}_A \) denote the Lebesgue measure and the characteristic function of the set \(A \) respectively.
Proof. Let \(I_j = [(j - 1)2^{-N}, j2^{-N}) \) \((j = 1, 2, \ldots, 2^N)\). We will choose dyadic intervals \(d_j \) such that \(d_j \subseteq I_j \) and \(m(d_j) = 2^-(N+2^N) \) for all \(j = 1, 2, \ldots, 2^N \), and put \(E_n = \bigcup_{j=1}^{2^N} d_j \).

Then we get

\[
m(E_n) = \sum_{j=1}^{2^N} m(d_j) = 2^{-2^N}.
\]

We note that for any \(k \) with \(0 < k < 2^N \)

\[
m\{t \in E_n; w_k(t) = 1\} = m\{t \in E_n; w_k(t) = -1\}
\]

and for any \(k \geq 2^N + 2^N \)

\[
m\{t \in d_j; w_k(t) = 1\} = m\{t \in d_j; w_k(t) = -1\}
\]

for all \(j = 1, 2, \ldots, 2^N \). Hence, we obtain

\[
C_k(\chi_{E_n}) = 0 \quad \text{if} \quad 0 < k < 2^N \quad \text{or} \quad k \geq 2^N + 2^N.
\]

It remains to choose the dyadic intervals \(d_j \), so that (iii) is satisfied.

We note that for \(n < 2^N \), \(D_n(t) = \sum_{j=0}^{n-1} w_j(t) \) is constant on \(I_j \) for each \(i = 1, 2, \ldots, 2^N \), and hence \(D_n(x + t) \) is constant as \(x \) and \(t \) vary over \(I_i \) and \(I_j \) respectively. Let \(D_n(I_i + I_j) \) denote the value of \(D_n(x + t) \) for \(x \in I_i \) and \(t \in I_j \), and

\[
\sigma(x) = \begin{cases} 1 & \text{if } x \geq 0, \\ -1 & \text{if } x < 0. \end{cases}
\]

Consider the \(2^N \)-tuples \(R_k \) \((1 \leq k \leq 2^N)\) such that

\[
R_k = (\sigma(D_n(I_k + I_{k+1})), \sigma(D_n(I_k + I_{k+2})), \ldots, \sigma(D_n(I_k + I_{2^N}))).
\]

We now define the dyadic interval \(d_j \) by

\[
d_j = [(j - 1)2^{-N}, j2^{-N}) + \sum_{i=1}^{2^N} \epsilon_{ji} 2^{-i} \quad \text{and} \quad (j - 1)2^{-N} + \sum_{i=1}^{2^N} \epsilon_{ji} 2^{-i} + 2^{-(N+2^N)}
\]

where \(\epsilon_{ji} \) \((1 \leq i \leq 2^N, 1 \leq j \leq 2^N)\) is either 0 or 1 and

\[
(-1)^{\epsilon_{ji}} = \sigma(D_n(I_i + I_j)).
\]

Hence, for all \(t \in d_j \) \((1 \leq j \leq 2^N)\)

\[
w_{2^N+i-1}(t)D_n(I_i + I_j) = r_{N+i-1}(t)D_n(I_i + I_j) = (-1)^{\epsilon_{ji}}D_n(I_i + I_j) \geq 0
\]

for each \(i \) with \(1 \leq i \leq 2^N \).

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now we set \(E_n = \bigcup_{j=1}^{2N} d_j \) and it remains to show that \(\chi_{E_n} \) satisfies condition (iii).

For any fixed \(x \in [0, 1) \), there exists a unique \(k \) such that \(x \in I_k \), and we set
\[
N_{kx} = n + 2^{N+k-1} \quad (2^{N-1} < n < 2^N, n \text{ fixed}).
\]
We again note that
\[
d_n(x^+t) \geq 0
\]
for all \(t \in d_j \) and \(j = 1, 2, \ldots, 2^N \). Since \(d_n(x^+t) \) is constant on each \(I_i \) \((1 \leq i \leq 2^N)\) and \(m(E_n) = 2^{-2N} \), we obtain, by applying (15),
\[
|S_{N_{kx}} \chi_{E_n}(x) - S_{2^{N+k-1}} \chi_{E_n}(x)| = \left| \int_0^1 \chi_{E_n}(t) d_n(x^+t)dt \right|
\]
(16)
\[
= \left| \sum_{j=1}^{2^N} \int_{d_j} w_{2^{N+k-1}}(t) d_n(x^+t)dt \right| = \sum_{j=1}^{2^N} \int_{d_j} |D_n(x^+t)|dt
\]
\[
= 2^{-2N} \sum_{j=1}^{2^N} \int_{I_j} |D_n(x^+t)|dt = m(E_n) \int_0^1 |D_n(x^+t)|dt = m(E_n) \cdot L_n.
\]
Thus, (16) implies \(M_\chi_{E_n}(x) \geq \frac{1}{2} L_n m(E_n) \). The lemma is proved.

Now we are ready to prove the following theorem:

Theorem. Let \(\Phi \) be a function satisfying conditions (a), (b) and (c).

Then there exists a function \(f \in \Phi(L(0, 1)) \) such that \(S_n f(x) \) diverges everywhere.

Proof. If we note (6) and properties of the function \(\Phi \), we may choose a sequence \(\{n_j\} \) of positive integers satisfying the following conditions:

(a) there is a constant \(A > 0 \) such that \(L_n \geq A \log n \),

(b) \(N_{j+1} \geq N_j + 2^N \), and

\(\Phi(\alpha_j) \leq j^{-2} \alpha_j (\log \log \alpha_j) \),

where \(2^{N_j} \leq n_j < 2^{N_j} \), \(\alpha_j = 1/(\log n_j) m(E_n) \), \(m(E_n) = 2^{-2N} \) and the sets \(E_n \) are the same as in the lemma. It is easy to see that the sequence \(\{\alpha_n\} \) is a lacunary sequence and there exists a constant \(C \) such that
\[
\sum_{j=1}^{\infty} \alpha_j \leq C \alpha_n.
\]

Let \(f \) be the measurable function defined by
(18) \[f(x) = \sum_{j=1}^{\infty} \alpha_j \chi_{E_{n_j}}(x). \]

From the properties of \(\Phi \) and (17) we get

(19) \[\Phi \left(\sum_{j=1}^{\infty} \alpha_j \chi_{E_{n_j}}(x) \right) \leq C \sum_{j=1}^{\infty} \Phi(\alpha_j) \chi_{E_{n_j}}(x). \]

In fact, if \(x \) does not belong to \(\bigcup_{j=1}^{\infty} E_{n_j} \) or \(x \) belongs to infinitely many \(E_{n_j} \)'s then both sides of (19) are equal to 0 or \(\infty \) respectively, and if \(x \) belongs to finitely many \(E_{n_j} \)'s then

\[\Phi \left(\sum_{j=1}^{\infty} \alpha_j \chi_{E_{n_j}}(x) \right) = \Phi \left(\sum_{j=1}^{k} \alpha_j \chi_{E_{n_j}}(x) \right) \leq \Phi \left(\sum_{j=1}^{k} \alpha_j \chi_{E_{n_k}}(x) \right) \]

\[\leq \Phi(C \alpha_k) \chi_{E_{n_k}}(x) \leq C \sum_{j=1}^{\infty} \Phi(\alpha_j) \chi_{E_{n_j}}(x) \]

where \(k = \text{max}\{j; x \in E_{n_j}\} < \infty \). Hence, we have

(20) \[\int_{0}^{1} \Phi(f(x))dx \leq C \sum_{j=1}^{\infty} \Phi(\alpha_j)m(E_{n_j}) \leq C \sum_{j=1}^{\infty} \frac{1}{j^2} \alpha_j (\log \log \alpha_j)m(E_{n_j}) < \infty. \]

This implies \(f \in \Phi(L) \).

Now it remains to show that \(S_n f(x) \) diverges everywhere. Let \(x \) be a fixed point in \([0, 1)\).

For each positive integer \(k \), (14) and (16) imply that there exists a positive integer \(n_{kx} \) such that

(21) \[n_{kx} = n_k + 2^{N_{kx}} \quad \text{with} \quad N_k \leq n_{kx} < N_k + 2^{N_k}, \]

and

(22) \[|S_{n_{kx}} \chi_{E_{n_k}}(x) - S_{2^{N_{kx}}} \chi_{E_{n_k}}(x)| = L_{n_k} m(E_{n_k}). \]

If \(j \neq k \), we obtain

(23) \[S_{n_{kx}} \chi_{E_{n_j}}(x) - S_{2^{N_{kx}}} \chi_{E_{n_j}}(x) = \sum_{i=2^{N_{kx}}}^{n_{kx}-1} C_i(\chi_{E_{n_j}}) \omega_i(x) = 0 \]

since part (ii) of the lemma implies \(C_i(\chi_{E_{n_j}}) = 0 \) if \(2^{N_k} \leq i < 2^{N_k+1} \). A combination of (22), (23), (18) and (a) gives

\[|S_{n_{kx}} f(x) - S_{2^{N_{kx}}} f(x)| = \alpha_k |S_{n_{kx}} \chi_{E_{n_k}}(x) - S_{2^{N_{kx}}} \chi_{E_{n_k}}(x)| \]

\[= \alpha_k L_{n_k} m(E_{n_k}) = L_{n_k} /\log n_k \geq A > 0. \]
We finally get
\[
\limsup_{m, n \to \infty} |S_m f(x) - S_n f(x)| \geq A > 0
\]
for all \(x \in [0, 1) \), that is, the Fourier-Walsh series of \(f \in \Phi(L) \) diverges everywhere.

Remark. A theorem in E. M. Stein [3, Theorem 3] implies that if for every \(f \in \Phi(L) \)
\[
m \left\{ x \in (0, 1): \limsup_{n \to \infty} |S_n f(x)| < \infty \right\} > 0
\]
then there exists an absolute constant \(A \) such that for any \(y > 0 \)
\[
m \left\{ x \in (0, 1): \sup_{n \geq 1} |S_n f(x)| > y \right\} \leq \int_0^1 \Phi \left(\frac{A}{y} |f(x)| \right) dx.
\]

We may apply this theorem to prove the existence of a function in the class \(\Phi(L) \) whose Fourier-Walsh series diverges almost everywhere.

In fact, let \(f(x) = \chi_{E_n}(x) \) and \(y_n = \frac{1}{2} L_n m(E_n) \), where the set \(E_n \) is defined in the lemma. Then part (iii) of the Lemma implies
\[
m \left\{ x \in (0, 1): M_{\chi_{E_n}}(x) > y_n \right\} = 1
\]
for all positive integers \(n \), but for \(\epsilon, 0 < \epsilon < 1 \),
\[
\int_0^1 \Phi \left(\frac{A_{\chi_{E_n}}(x)}{y_n} \right) dx \leq \epsilon < 1
\]
for all sufficiently large \(n \) where the constant \(A \) is as same as in the inequality (26).

Thus, our theorem for the almost everywhere divergence follows.

REFERENCES

DEPARTMENT OF MATHEMATICS, PURDUE UNIVERSITY, WEST LAFAYETTE, INDIANA 47907

Current address: ITT/Federal Electric Corporation, P. O. Box 1886, Vandenberg Air Force Base, California 93437

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use