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STABILITY: INDEX AND ORDER IN THE BRAUER GROUP

LAWRENCE J. RISMAN

ABSTRACT.  A field is stable if for every division algebra  A   in its

Brauer group order of  A = index of  A.   Index and order in the Brauer group

of a field  F  with discrete valuation and perfect residue class field  K are

calculated.  Division algebras with specified order and index are constructed.

For  F complete, necessary and sufficient conditions for the stability

of  F are given in terms of the Brauer group of  K.   These results follow.

A finite extension of a stable field  need not be stable.  The power series

field  K((x))  is stable for  K a local field.  K((x)) and  K(x) are not stable

for K a global field.

Introduction.   A field  F  is stable if for every division algebra A   in the

Brauer group Br(F), order eF(A) = index S   (A).  In general order divides

index and they have the same prime factors.  Any local or global field is

stable by class field theory.  Many results concerning subfields and subalge-

bras of division algebras depend on stability.  See, for example, [Sc] and [R].

For a profinite group  G, the character group  G = continuous

Hom(G, Q/Z).  For a field  F, G(F) = Gal(F /F) with  F     a separable alge-

braic closure of  F.   If  L  is a finite Galois extension of  F  and / is a char-

acter on Gal(L/F), then / inflates to a character on  G(F).  These topics are

exposed in [S].

Lemma 1.   Let  F  be a field and G = G(F).   If f £ G, H = Ker /, and L =

fixed field of H, then L   is a finite cyclic extension of F with Gal (L/F) =

G/H and order / = index [G:H] = [L: F].

// L   is a finite Galois extension of F, then L   is cyclic over F  iff

there is a character on Gal(E/F)  of order [L : F],

Proof.   Immediate from Galois theory and the fact that every finite sub-

group of  Q/Z is cyclic.

For M a field extension of  F and / £ G(F), fM = the restriction of / to

G(M).  This definition assumes  F    C M .   If fM = 0, M  is said to split /. For
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D in Br(F), DM = D ®p M = the image of D in Br(M).

Lemma 2. Let f £ G(F) and L = fixed field of Ker /. Let M be a field

extension of F and LM a compositum over F. Then order /„ = iLM : Ml, M

splits f iff L C M, and order /„ = order / iff M and L are linearly disjoint

over F.

Proof.  This result follows from Galois theory.

Complete fields.   Let  K be a field complete in a discrete valuation with

perfect residue field   K  and  G = G(K).  By local field theory [S, Theorem

12.2, p. 194] we have the following split exact sequence:  0 —> Br(K) —»

Br(K) -» G -»0.  Hence Br(K) » Br(K) © G.

Any element of  Br(K)  corresponds to a unique  D + f with D £ Bt(K)

and f £ G.   By abuse of language we write  D + f £ Bt(K).

The embedding of G in Br(K) depends on a choice of a uniformizing

parameter  t £ K.  (It does not depend on the completeness of  K.) Let f £ G

with  L = fixed field of Ker /.   Let  L be the corresponding unramified exten-

sion of  K with g a generator of Gal(L/K) = Gal(E/r<).  f(g) = 777/s £ Q/Z

with  s = [L : K], (m, s) = 1, and  0 < 772 < s.

The division algebra  A  e Br(K)  is defined by the crossed product

Y~llY=l8, Ys = tm.

The corresponding factor set in  H (G, K ) is defined by

Í1 if  i + j < s,
tm if  i + j> s.

Proposition 1.   Let D + f be in Br(K)  with  e = e~(D) and s = order of

f in G.   Let  L  be the fixed field of Ker /.   Then

1. ek(D + f) = l.c.m.te, s];

2. an unramified extension M  of K splits D + f iff M splits D  and

L CM;

3. 8/ÁD + f) = minimum [M : K]  for unramified splitting field M  of D + f ;

4. 8K(D+f) = 5.8^(01).

Proof.  Assertion 1 is immediate considering  D + f in  Br(K) © G.   For

L  an unramified extension of  K, the image  (D + /)L  of D + f in  Br(L)  is

Dt + ¡j.   Assertion 2 then follows by Lemma 2.   Assertion 3 follows from the

fact that every element of  Br(K)  contains an unramified maximal subfield
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[S, Proposition 12.2, p. 191].  Assertion 4 follows from Assertions 2 and 3.

Q.E.D.

Corollary 1.   // K  is not stable, then  K  is not stable.

Proof.   By Proposition 1 with f = 0, s = 1.

Corollary 2.   // Br(K) = 0, then  K  is stable, and every element of Bt(K)

contains a cyclic unramified maximal subfield which is contained in every

unramified splitting field.

Proof.   By Proposition 1 with  e = 1.

Proposition 2.   K  is stable iff K  is stable and for every cyclic exten-

sion L  of K and every division algebra D  in Bi(K), the index reduction

¡actor of L  and D = (e, s) where  e = S—(D) and s = [L : K\.
K

Proof.  If  K is stable, then  K is stable.  Suppose   K is stable.  We show

that  K is stable iff the above condition holds.  Let  D + f be in  Br(K). Let

L, s, and  e  be as in Proposition 1.  Then  St;(D) = e, by stability of  K.  By

Proposition 1,

eJ\D + f) = l.c.m. [e, s] = es/(e, s).

Let r be the index reduction factor of  L  and  D, so that  Sy(D ®-¿ L) =

e/r.   By Proposition 1, 8K(D + f) = es/r.   Hence   e„(£> + /) = 8K(D + f) iff

r = (e, s).  The result follows by Lemma 1.     Q.E.D.

Corollary 1.   // K  is a local field of characteristic zero, then  K  is

stable.

Corollary 2.   // K  is a global field of characteristic zero, then  K  is

not stable.

We give an example of   a finite extension of a stable field that is not

stable.  We seek a field  F with the following properties.

(1) F is perfect and  Br(F) = 0.

(2) K is a finite extension of  F.

(3) D  is a division algebra in Bt(K), d = S„(D).

(4) L is a cyclic extension of K, s = IL : K\.

(5) D.   is a division algebra.

(6) (d, s) 4 i.

Given such a field  F we consider  F((t)), the field of formal power

series in a variable  /.   K((t)) is a finite extension of  F((t)).  By Proposition

2, F((t)) is stable and  K((t)) is not stable.
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The following example, due to Brumer and Auslander, satisfies the

above conditions.  Let  F  be the maximum solvable extension of the rationals.

Let  K be a finite extension of  F, obtained by solving an unsolvable equa-

tion, with  L  and  M linearly disjoint cyclic extensions of  K, s = [L : K],

d = [M:K], and  (d, s) 4 1-

Let  F = F({x)) and  K = K((x)), fields of formal power series in a vari-

able  x.   Let division algebra  D  in  Br(K) be defined by a character of order

d on  Gal(M/K).   Let  L = L((x)).  By Proposition 1, F has the desired proper-

ties.

Rational function fields.   Let  K be a field and  K(x) the field of rational

functions in a variable  x.

Lemma 3.   The restriction map Bt(K) —> Bt(K(x)), D H-»D = D <&, K(x),
I\\x ) K

is an injective homomorphism of groups. If D is a division algebra in

Br(K), then D„. . is a division algebra whose order and index in Bt(K(x))

are, respectively, equal to those of D  in Bt(K).

Proof.  The map  D —> £>K,   .  is clearly a homomorphism.  It is injective

and preserves index since zero divisors in D„,   . yield by specialization

zero divisors in  D.   An injective homomorphism of groups preserves order.

Q.E.D.

Corollary.   // K  is not stable, then  K(x)  is not stable.

By abuse of language we write  D for D„,   ..

Let  K be a perfect field and  G = G(K).   Let  í  be a monic linear poly-

nomial in  K[x\.   For f in  G with  L = the fixed field of Ker /, let  L = L(x).

With  L  so chosen, A, is defined as above in the complete case.

Lemma 4.   The map G —> Bt(K(x)) given by f i—> A . is an injective

homomorphism of groups.   If f is in G  then A, is a division algebra in

Bt(K(x)) and eK.ÁA.) = 8K,S.A.) = order of f in G.

Proof.  The result follows from the following commutative diagram.

Br(fC(x))

G

'Bt(K((t)))

Q.E.D.

By abuse of language we write  / e Bt(K(x)).
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Proposition 3. Let K be a perfect field and G = G(K). Then Bt(K) © G

is isomorphic to a direct summand of Bt(K(x)), and the calculations of order

and index in Br (K) ©G  contained in Proposition 1 are valid for Bt(K(x)).

Proof.  Let  7  be a monic linear polynomial in   K[x],   The result follows

from the following commutative diagram and the above lemmata.

^Bt(K(x))

Br(K) © G C^f res

^^•Br(K((/)))

Q.E.D.

Corollary.   // K  is a global field of characteristic zero, then K(x)  is not

stable.

Definition.  For  K a field and  K(x., • • • , x ) the field of rational func-

tions   in   n   independent   indeterminates,   let   G.  = G(K)   and   G    =

G(K(xv..., xn_x)).

Lemma 5.   For all n, G     is isomorphic to a subgroup of G   + ].

Proof.  Immediate from Galois theory.

Proposition 4.   Let  K  be a field of characteristic zero.

(1) Br(K) © (0"=1 G.)  is a direct summand of Bi(K(xv ••• , x )).

(2) Bt(K) © (®"=1 G(K))  is isomorphic to a subgroup of Bt(K(x v---, x )).

Proof. Assertion 1 follows from Proposition 3 by induction. Assertion 2

follows from Assertion 1 and Lemma 5

Definition.   For  K a field   K     is defined inductively by  K   = K,

K   = K      ,((t )) the field of formal power series in a variable  t . H. = G(K)

and H   =G(K      .).
72 77— 1

Lemma 6.   For all n, H     is isomorphic to a subgroup of H   +..

Proof.  Immediate from Galois theory.

Proposition 5.   Let  K be a field of characteristic zero.

(1) Br(K) ®(©"=1 H.)  is isomorphic to Br(K^).

(2) Br(K) © (©"=1 G(K))  is isomorphic to a subgroup of Bt(K ).

Proof. Assertion 1 follows from [S, Theorem 12.4, p. 194] by induction.

Assertion 2 follows from Assertion 1 by Lemma 6.     Q.E.D.
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Index and order.   Let  K be a field of characteristic zero. For D e Br(K)

and  L ., • • • , L     cyclic extensions of  K, consider  D +/,+••• + /    in

Br(K(Xj, • • • , x ))   or  Br(K  ) by Propositions 4 or 5, where f. £ G(K) with

L . = fixed field of Kernel  /..
7 ' I

Proposition 6.   The order of D + f,+••• + f   = l.c.m. [e, s,, • • •, s ]
1 ' ' i ' n In

where  e - e„(D)  ö72<i s . = [L .: Ki.
K z i

Proof.   By Lemma 1, order f. = s..  The result is immediate considering

D + fl + • • • + /    as an element in the direct sum Br(K)©(0^=1G(K)). Q. E. D.

Proposition 7.   Let  L = compositum L.  ••• L     over K.   The index of

D + f ,+•••+ f   = s • d where s = \_L : K] and d = 8, (D.).
' 1 ' n L      L

Proof.   The calculation proceeds by repeated application of Proposition

1. We simplify notation by writing  L. in place of  L .(x.,•••, x .) or  L¿..

S(D + f, + ■■■ + f ) = ÍL   : K]8.    (D + /, + ••• + /      ,),        (by Proposition 1)

= LLn: K]SLn((D + fl + ... + f„_2)Ln + fn_lLJ

= ÍL„: K][Ln_lLn: LjdL^iLn(D + f1 + ■■• + fn_2)Ln_iLn

(by Proposition 1)

= [L: K]8L(DL)

= s ■ d.      Q.E.D.

By the above results, exhibiting a division algebra with specified index

and order in the Brauer group of  K (x., • • • , x )   or  K    is reduced, essen-

tially, to finding certain cyclic extensions of  K.

Proposition 8. Let K be a global field of characteristic zero. Let a and

b be positive integers such that a\b and b\an. Then there exists an element

in Bt(K(x., - • • , x   _ j))    and in Bt(K  _ .) with order = a  and index = b.

Proof.   Let  5.,---, s    be  72  integers whose product is   b and whose

least common multiple is  a.   Let  D be a division algebra in  Br(K) with

8¡ÁD) = eK(D) = s .   Let  L ,, • • • , L   _.   be linearly disjoint cyclic extensions

of  K  and  L = compositum  L . • • • L   _,  over  K such that  degree [L . : K] = s.

and 8 ,(D,) = s  .   The existence of D  and the   L . is a consequence of the

structure of Br(K)  and the Grunwald-Wang theorem [A, Chapter 9].  Let /. £

G(K) with L. = fixed field of Kernel /..
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Then  D + f ,+••• + /  _ .   has order  a by Proposition 6 and index  b by

Proposition 7.     Q.E.D.

If  72 is the smallest integer such that  b\a", then n < log2 b. In Brauer's

original paper [B] a division algebra with specified order  a and index  b is

constructed over a function field of transcendence degree   b.   In the above

corollary we extend this result to the field of all rational functions in fewer

variables.  The division algebra in [B] is cyclic.  While the above division

algebra is a crossed product I do not know whether it is cyclic.
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