Fixed point theorems for nonexpansive mappings satisfying certain boundary conditions
HTML articles powered by AMS MathViewer
- by W. A. Kirk
- Proc. Amer. Math. Soc. 50 (1975), 143-149
- DOI: https://doi.org/10.1090/S0002-9939-1975-0380527-7
- PDF | Request permission
Abstract:
Let $K$ be a bounded closed convex subset of a Banach space $X$ with $\operatorname {int} K \ne \emptyset$, and suppose $K$ has the fixed point property with respect to nonexpansive self-mappings (i.e., mappings $U:K \to K$ such that $||U(x) - U(y)|| \leq ||x - y||,x,y \in K)$. Let $T:K \to X$ be nonexpansive and satisfy \[ \inf \{ ||x - T(x)||:x \in {\text { boundary }}K,T(x) \notin K\} > 0.\] It is shown that if in addition, either (i) $T$ satisfies the Leray-Schauder boundary condition: there exists $z \in \operatorname {int} K$ such that $T(x) - z \ne \lambda (x - z)$ for all $x \in {\text { boundary }}K,\lambda < 1$, or (ii) $\inf \{ ||x - T(x)||:x \in K\} = 0$, is satisfied, then $T$ has a fixed point in $K$.References
- Nadim A. Assad and W. A. Kirk, Fixed point theorems for set-valued mappings of contractive type, Pacific J. Math. 43 (1972), 553–562. MR 341459
- M. S. Brodskiĭ and D. P. Mil′man, On the center of a convex set, Doklady Akad. Nauk SSSR (N.S.) 59 (1948), 837–840 (Russian). MR 0024073
- Felix E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A. 54 (1965), 1041–1044. MR 187120, DOI 10.1073/pnas.54.4.1041
- Felix E. Browder, Semicontractive and semiaccretive nonlinear mappings in Banach spaces, Bull. Amer. Math. Soc. 74 (1968), 660–665. MR 230179, DOI 10.1090/S0002-9904-1968-11983-4 R. E. Bruck, Jr., Private communication.
- Michael G. Crandall, Differential equations on convex sets, J. Math. Soc. Japan 22 (1970), 443–455. MR 268491, DOI 10.2969/jmsj/02240443
- Juan A. Gatica and W. A. Kirk, A fixed point theorem for $k$-set-contractions defined in a cone, Pacific J. Math. 53 (1974), 131–136. MR 353071
- Dietrich Göhde, Zum Prinzip der kontraktiven Abbildung, Math. Nachr. 30 (1965), 251–258 (German). MR 190718, DOI 10.1002/mana.19650300312
- Benjamin R. Halpern and George M. Bergman, A fixed-point theorem for inward and outward maps, Trans. Amer. Math. Soc. 130 (1968), 353–358. MR 221345, DOI 10.1090/S0002-9947-1968-0221345-0
- W. A. Kirk, A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly 72 (1965), 1004–1006. MR 189009, DOI 10.2307/2313345
- W. A. Kirk, Fixed point theorems for nonlinear nonexpansive and generalized contraction mappings, Pacific J. Math. 38 (1971), 89–94. MR 305160
- Roger D. Nussbaum, The fixed point index for local condensing maps, Ann. Mat. Pura Appl. (4) 89 (1971), 217–258. MR 312341, DOI 10.1007/BF02414948 Z. Opial, Nonexpansive and monotone mappings in Banach spaces, Lecture Notes 67-1, Brown University, Providence, R. I., 1967.
- W. V. Petryshyn, Structure of the fixed points sets of $k$-set-contractions, Arch. Rational Mech. Anal. 40 (1970/71), 312–328. MR 273480, DOI 10.1007/BF00252680
- W. V. Petryshyn, Remarks on condensing and $k$-set-contractive mappings, J. Math. Anal. Appl. 39 (1972), 717–741. MR 328687, DOI 10.1016/0022-247X(72)90194-1
- Simeon Reich, Remarks on fixed points, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 52 (1972), 689–697 (English, with Italian summary). MR 331139
- Simeon Reich, Fixed points of condensing functions, J. Math. Anal. Appl. 41 (1973), 460–467. MR 322609, DOI 10.1016/0022-247X(73)90220-5 G. Vidossich, Nonexistence of periodic solutions of differential equations and applications to zeros of nonlinear operators (preprint). —, Applications of topology to analysis: On the topological properties of the set of fixed points of nonlinear operators, Confer. Sem. Mat. Univ. Bari 126 (1971), 1-62.
- J. R. L. Webb, A fixed point theorem and applications to functional equations in Banach spaces, Boll. Un. Mat. Ital. (4) 4 (1971), 775–788 (English, with Italian summary). MR 0377631
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 50 (1975), 143-149
- MSC: Primary 47H10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0380527-7
- MathSciNet review: 0380527