MORITA CONTEXTS OF ENRICHED CATEGORIES

J. FISHER-PALMQUIST AND P. H. PALMQUIST

ABSTRACT. Categories enriched over a closed category \(V \) are considered. The theorems and proofs are nonadditive while specializing when \(V \) is the category of abelian groups to yield different interpretations and proofs of old results. \(V \)-adjoint equivalences of certain \(V \)-functor categories are shown to correspond to generalized Morita equivalences between small \(V \)-categories. Morita contexts are given a simple description as certain cospans and are shown to support a 2-dimensional structure.

For a bicomplete closed category \(V \) \([6, p. 180]\) we show that our generalized \(V \)-Morita equivalences between small \(V \)-categories correspond to \(V \)-adjoint equivalences between the corresponding \(V \)-functor categories. \(V \)-Morita equivalences are defined as Morita contexts invertible with respect to horizontal composition. \(V \)-Morita contexts are a special kind of diagram \((C_1 \rightarrow C \leftarrow C_0) \) in the category of small \(V \)-categories with horizontal composition induced by pushouts. In the classical case when \(V \) is the category of abelian groups and \(C_0 \) and \(C_1 \) are each additive categories with one object, our definition of Morita context is equivalent to that of Bass \([1], [2]\).

Our point of view is to consider Morita contexts as arrows in a bicategory (à la Bénabou \([3, pp. 3–6]\)) and to apply a morphism which takes a Morita context into a left adjoint. We use right Kan extensions \([4]\) to express our basic constructions.

We use two special \(V \)-categories \(G \) and \(2 \), each of which has \(\{0, 1\} \) as its set of objects, such that \(G(i, j) = 1 \) the unit object of \(V \) and \(2(i, j) \) is the terminal object of \(V \) for all \(i, j \). (If \(V \) is cartesian closed, \(G = 2 \).

The \(V \)-category \([I]\) is the one object category with hom object \(I \).

A \(V \)-Morita context \(M \) is defined to be a pair \((C, T : C \rightarrow 2)\) where \(C \)
is a small \mathbf{V}-category and T is a \mathbf{V}-functor, and a map of Morita contexts $F: (C, T) \to (C', T')$ is a \mathbf{V}-functor $F: C \to C'$ such that $T'F = T$. In other words, a Morita context $M = (C, T)$ is a cospan $(C \leftarrow C_1 \rightarrow C_0)$ in the category of small \mathbf{V}-categories [2] in which d_0 and d_1 are the inclusions of the corresponding fibers of T and the set of objects of C is the disjoint union of the sets of objects of C_0 and C_1, and a map of Morita contexts is a map of cospans. Morita contexts and their maps form a category \mathcal{M} equipped with four important endofunctors. For $M = (C, T)$, define the transpose of M by $M^t = (C, rT)$ where $r: 2 \to 2$ is given by $r(i) = j$, $i \neq j$; define the opposite of M by $M^o = (C^o, T^o)$. For a Morita context $M = (C_1 \leftarrow C \rightarrow C_0)$ define the left identity of M by $l(M) = (C_1 \otimes G, L)$ where L is induced by projection on G; define the right identity of M by $r(M) = l(M^t)$.

If $M = (C_1 \leftarrow C \rightarrow C_0)$ and $M' = (C_1' \leftarrow C' \rightarrow C_0')$ are Morita contexts with $l(M) = l(M')$, define the **-composite $M \star M'$ by first taking the composite of the cospans, i.e., let

$$
\begin{array}{ccc}
C_0 & \longrightarrow & C' \\
\downarrow & & \downarrow \\
C & \longrightarrow & C' \\
\end{array}
$$

be a pushout in the category of small \mathbf{V}-categories and obtain the cospan $(C_1 \leftarrow C \downarrow C_0 \rightarrow C' \leftarrow C_0')$, and then let the category of $M \star M'$ be the full subcategory of $C \downarrow C_0 \downarrow C'$ with objects the disjoint union of the objects of C_1 and C_0'. We note that for $X \in |C_0'|$ and $Z \in |C_0|$, $(C \downarrow C_0 \downarrow C')(X, Z)$ is the coend [4] over all $Y \in |C_0|$ of $C(Y, Z) \otimes C'(X, Y)$. If $\phi: M \to N$ and $\phi': M' \to N'$ are maps of Morita contexts such that $r(\phi) = l(\phi')$ then there is a map $\phi \star \phi': M \star M' \to N \star N'$ by the universal property of pushouts. This **-composition is associative up to isomorphism since the composition of cospans is. There are left and right identity isomorphisms $l_M: l(M) \star M \to M$ and $r_M: M \star r(M) \to M$.

Theorem 1. If for small \mathbf{V}-categories C_0 and C_1 we define the category $B(C_0, C_1)$ to have as objects Morita contexts $(C_1 \leftarrow C \rightarrow C_0)$ and to have as maps only the maps of Morita contexts which are the identity on the fibers, then **-composition becomes a functor

$$**: B(C_0, C_1) \times B(C_0, C_1) \to B(C_0, C_1)$$

and B is a bicategory in the sense of Bénabou [3, pp. 3–6]. □

Define maps $\lambda_M: M \star M^t \to l(M)$ and $\rho_M: M^t \star M \to r(M)$ such that λ_M
is the identity on the fibers and \(\lambda_M \) on the other hom objects is induced by the compositions
\[
\{ C(Y, Z) \otimes C(X, Y) \to C(X, Z) \mid Y \in C_0 \}
\]
and \(\rho_M = \lambda_{M^t} \). Ignoring associativity and left and right identity isomorphisms we have equations:

1. \((\lambda_M * M) = (M * \rho_M): M * M^t * M \to M; \)
2. \(\lambda_{M * M^t} = \lambda_M \cdot (M * \lambda_{M^t} * M^t): (M * M^t) * (M * M^t)^t \to \mathcal{I}(M); \)
3. \(\lambda_N \cdot (\phi * \phi^t) = \mathcal{I}(\phi) \cdot \lambda_M: M * M^t \to \mathcal{I}(N); \)

for Morita contexts \(M, M', \) and \(N \) with \(\mathcal{I}(M) = \mathcal{I}(M') \) and \(\phi: M \to N \) a map of Morita contexts.

If \(V \) is the category of abelian groups, the correspondence between our Morita contexts and those of Newell [7] which are 4-tuples \((U, V, \mu, \nu) \) is given as follows: \(M = (C_1 \to C \to C_0) \) corresponds to the 4-tuple with \(U \) (respectively, \(V \)) the restriction of the enriched hom of \(C \) to \(C_0 \otimes C_1 \) (respectively, \(C_1 \otimes C_0 \)) and \(\mu \) and \(\nu \) the transformations induced by \(\rho_M \) and \(\lambda_M \), respectively.

Theorem 2. The following statements are equivalent for a Morita context \(M \).

- (a) There exists a Morita context \(M' \) such that \(M * M' \cong \mathcal{I}(M) \), i.e., \(M \) has a right \(*\)-inverse.
- (b) \(\lambda_M: M * M^t \to \mathcal{I}(M) \) is a split epimorphism.
- (c) \(\lambda_M \) is an isomorphism.
- (d) \(M^t \) has a left \(*\)-inverse.
- (e) \(M^t \) has a right \(*\)-inverse.

Proof. The only hard part is (a) \(\Rightarrow \) (b) \(\Rightarrow \) (c). To show (a) \(\Rightarrow \) (b) we note that if \(\phi: M * M^t \to \mathcal{I}(M) \) is the isomorphism then equations (2) and (3) above give
\[
\lambda_{\mathcal{I}(M)} \cdot (\phi * \phi^t) = \mathcal{I}(\phi) \cdot \lambda_M \cdot (M * \lambda_{M^t} * M^t).
\]
Since \(\lambda_{\mathcal{I}(M)} \) is an isomorphism and so are \(\mathcal{I}(\phi) \) and \(\phi * \phi^t \), we have \(\lambda_M \) is a split epimorphism.

If (b) holds then there is an \(s: \mathcal{I}(M) \to M * M^t \) such that \(\lambda_M s = \text{id}_{\mathcal{I}(M)} \).

Equation (1) applied to both \(M \) and \(M^t \) gives us that \(s\lambda_M = (\lambda_M s) * M * M^t \) if we ignore all associativity and left and right identity isomorphisms. Hence \(s\lambda_M = \text{id}_{M * M^t} \). \(\square \)
A Morita context is said to be a Morita equivalence if it has both a left and a right \(*\)-inverse. Examples are \(\mathcal{I}(M)\) and \(\mathcal{J}(M)\).

There is another binary operation \(\Box\) on Morita contexts (which we might call vertical composition) which is always defined and is associative and commutative up to isomorphism. Namely, if \(M = (C_1 \to C \to C_0)\) and \(N = (D_1 \to D \to D_0)\) are Morita contexts \(M \Box N\) has as its category the full subcategory of \(C \otimes D\) with fibers \(C_1 \otimes D_1\) and \(C_0 \otimes D_0\). For Morita contexts \(M, M', N\) and \(N'\) such that \(\mathcal{I}(M) = \mathcal{I}(M')\) and \(\mathcal{J}(N) = \mathcal{I}(N')\) we have equations:

\[
\begin{align*}
(4) \quad (M \Box N) \ast (M' \Box N') &= (M \ast M') \Box (N \ast N'); \\
(5) \quad (M \Box N)^t &= M^t \Box N^t \quad \text{and} \quad \rho_{M \Box N} = \rho_M \Box \rho_N.
\end{align*}
\]

Theorem 3. Let \(M\) be a Morita context.

(i) If \(M\) is a Morita equivalence so are \(M^t\) and \(M^0\).

(ii) If \(M\) and \(M'\) are Morita equivalences with \(\mathcal{I}(M) = \mathcal{I}(M')\), then \(M \ast M'\) is a Morita equivalence.

(iii) If \(M\) and \(N\) have left \(*\)-inverses so does \(M \Box N\).

(iv) If \(\mathcal{I}(M) = \mathcal{J}(N) = ([1] \to [1] \otimes G \leftarrow [1])\) and \(M \Box N\) is a Morita equivalence, then \(M\) and \(N\) are Morita equivalences.

Proof. Statements (i), (ii) and (iii) follow from Theorem 2 and equations (2) and (5). If the hypotheses of (iv) hold then equation (4) and the equalities \(M = M \Box \mathcal{J}(N)\) and \(N = \mathcal{I}(M) \Box N\) yield the equations \(M \Box N = (\mathcal{I}(M) \Box N) \ast M\) and \(M \Box N = (M \Box \mathcal{J}(N)) \ast N\), from which the conclusions of (iv) follow. \(\Box\)

Let \(\text{Lad}\) be the 2-dimensional category with objects small \(\mathcal{V}\)-categories \(C\) and \(\text{Lad}(C, C')\) the category of \(\mathcal{V}\)-functors from \(C\) to \(C'\) which are \(\mathcal{V}\)-left adjoints, i.e., \(\mathcal{V}\)-cocontinuous, with maps \(\mathcal{V}\)-natural transformations. There is a strict homomorphism of bicategories \(\Phi: B \to \text{Lad}\) defined by

\[
\Phi(C) = C \quad \text{and} \quad \Phi\left(C_1 \begin{array}{c} d_1 \\ \downarrow \end{array} C \begin{array}{c} d_0 \\ \downarrow \end{array} C_0\right) = \text{Ran}_{V^d_0} V^{d_1} = V^{\ast_{V^d_0}},
\]

where we have computed the right Kan extension in terms of \((V^{d_0})^t\), the left adjoint of \(V^{d_0}\). Note that

\[
\Phi(M)(C_0(X, -))(Y) = C(X, Y)
\]

for \(X\) in \(C_0\) and \(Y\) in \(C_1\). We then have natural transformations

\(
\Phi(\lambda_M): \Phi(M) \cdot \Phi(M^t) \to \Phi(\mathcal{I}(M)) = \text{id}_{\mathcal{V}_C 1}
\)

and

\(
\Phi(\rho_M): \Phi(M^t) \cdot \Phi(M) \to \Phi(\mathcal{J}(M)) = \text{id}_{\mathcal{V}_C 0}
\)
and for X and Z in C_0

$$\Phi(\rho_M)(C_0(X, -))(Z) = \rho_M(X, Z).$$

Theorem 4. If

$$M = \left(\begin{array}{cc} d_1 & d_0 \\ C_1 & C_0 \end{array} \right)$$

is a Morita context with a right \ast-inverse, then the following are true:

(i) $\Phi(M')$ is left adjoint to $\Phi(M)$ with counit $\Phi(\rho_M)$ and unit $\Phi(\lambda_M)^{-1}$ which is an isomorphism.

(ii) The functor $\Phi(M')$ maps \mathbf{V}-atoms [5, (4.3)] into \mathbf{V}-atoms and hence representables into \mathbf{V}-atoms.

(iii) The functor

$$\mathbf{C}^0 \xrightarrow{R} \mathbf{V} \xrightarrow{\Phi} \mathbf{V}^0,$$

where R is the Yoneda embedding, is \mathbf{V}-full and faithful, i.e., $d_0 : C_0 \rightarrow C$ is \mathbf{V}-codense [4].

(iv) M has a left \ast-inverse if and only if

$$\mathbf{C}^0 \xrightarrow{R_1} \mathbf{V} \xrightarrow{\Phi(M')} \mathbf{V}^0$$

is \mathbf{V}-dense.

Proof. (i) is a consequence of applying Φ which is a strict map of bicategories to equation (1) for M and M'. (ii) follows from the fact that $\Phi(M)$ is the right adjoint of $\Phi(M')$ and is \mathbf{V}-cocontinuous. Thus for G a \mathbf{V}-atom in \mathbf{V}^C, we have

$$\mathbf{V}^{C_0}(\Phi(M')G, -) \simeq \mathbf{V}^{C_1}(G, -) \cdot \Phi(M)$$

which is \mathbf{V}-cocontinuous. Part (iii) is equivalent to stating both that

$$\mathbf{C}^0 \xrightarrow{R_1} \mathbf{V} \xrightarrow{\Phi} \mathbf{V}^0$$

is \mathbf{V}-full and faithful, which is true since R_1 and $\Phi(M')$ are, and that

$$\Phi(M)(C_0(C_0, -))C_1 = \mathbf{V}^{C_0}(\Phi(M')R_1(C_1), C_0(C_0, -))$$

for C_0 in C_0 and C_1 in C_1, which holds since $\Phi(M)$ is \mathbf{V}-right adjoint to $\Phi(M')$.

To show (iv) we note that since $\Phi(M')$ is \mathbf{V}-cocontinuous, $\Phi(M') \cdot R_1$ is \mathbf{V}-dense if and only if $\Phi(M')$ is \mathbf{V}-dense. But $\Phi(M')$ is \mathbf{V}-dense if and
only if its right adjoint is full and faithful, i.e., $\Phi(\rho_M)$ is an isomorphism. But by (6) $\Phi(\rho_M)$ is an isomorphism if and only if ρ_M is one. □

Corollary 5. The map of bicategories $\Phi: B \rightarrow \text{Lad}$ induces an isomorphism of the Picard groupoids [3, p. 57]

$$\hat{\Phi}: \text{Pic } B \rightarrow \text{Pic(} \text{Lad}).$$ □

$(\text{Pic } B)(C_0, C_1)$ is the set of isomorphism classes of Morita equivalences, i.e., invertible arrows from C_0 to C_1.

REFERENCES

2. ———, The Morita theorems, University of Oregon (mimeographed notes).

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, IRVINE, CALIFORNIA 92664