GROUPS WITH FAITHFUL BLOCKS

H. PAHLINGS

ABSTRACT. A necessary and sufficient condition is given for a finite group to have a p-block with kernel \{1\}. This extends a theorem of Gaschütz on the existence of a faithful irreducible representation of a finite group.

Let \(G \) be a finite group and \(F \) a field of characteristic \(p \geq 0 \). Then the group algebra \(FG \) is a direct sum of two-sided ideals \(B_i \) which are indecomposable as two-sided ideals \(FG = B_1 \oplus \cdots \oplus B_n \). The \(B_i \) are called the block ideals of \(FG \). If \(e \) is a block idempotent, i.e. the identity element of a block ideal \(B_i \), then a (left) \(FG \)-module \(V \) is said to belong to the block \(B \leftrightarrow e \) if \(eV = V \).

Furthermore, if \(p > 0 \) and \(R \) is a complete discrete valuation ring with residue class field \(F \) and quotient field \(K \) of characteristic 0, then every block idempotent \(e \) can be lifted to a block idempotent \(\bar{e} \) of \(RG \), which can be embedded in \(KG \). A \(KG \)-module \(V \) is also said to belong to the block \(B \leftrightarrow e \) if \(\bar{e}V = V \).

For the case that \(F \) and \(K \) are splitting fields for \(G \), R. Brauer \[1\] has defined the kernel of the block \(B \leftrightarrow e \) to be the intersection of the kernels of the (ordinary) irreducible \(K \)-representations of \(G \) belonging to \(B \leftrightarrow e \). Returning to the case where \(F \) is an arbitrary field we feel that it is natural to make the following

Definition. The kernel \(N(e) \) of a block \(B \leftrightarrow e \) is the kernel of the \(F \)-representation of \(G \), which is afforded by the block ideal \(B \). Thus \(N(e) = \{ g \in G | ge = e \} \).

We remark that this agrees with Brauer's definition as Proposition 1(b) below shows, but differs slightly from the one used in \[3\] and \[4\], where the intersection \(N^*(e) \) of the kernels of the irreducible \(F \)-representations of \(G \) belonging to \(B \leftrightarrow e \) was called the kernel of \(B \leftrightarrow e \). The kernel \(N(e) \) is uniquely determined by \(N^*(e) \) and vice versa. In fact, by a result of

Received by the editors April 2, 1974.

AMS (MOS) subject classifications (1970). Primary 20C20, 20C05.

Keywords and phrases. Group algebra, block, kernel of a block, faithful representations.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Michler [3]

\[N(e) = O_p(N^*(e)), \quad N^*(e)/N(e) = O_p(G/N(e)), \]

i.e. \(N(e) \) is the maximal \(p \)-regular normal subgroup of \(N^*(e) \) and \(N^*(e)/N(e) \) is the maximal normal \(p \)-subgroup of \(G/N(e) \). Here a normal subgroup is called \(p \)-regular, if its order is not divisible by \(p \).

Proposition 1. (a) The kernel \(N(e) \) of the block \(B \leftrightarrow e \) is equal to the kernel of every principal indecomposable module belonging to \(B \leftrightarrow e \).

(b) If \(p > 0 \) and \(R \) is a complete discrete valuation ring with residue class field \(F \) and quotient field \(K \) of characteristic 0, then \(N(e) \) is the intersection of the kernels of the irreducible \(K \)-representations belonging to \(B \leftrightarrow e \).

Proof. (a) Obviously \(N(e) \) is the intersection of the kernels of the principal indecomposable \(F \)-representations belonging to \(B \leftrightarrow e \). Let \(H \) be the kernel of a principal indecomposable module \(FGu \) belonging to \(B \leftrightarrow e \), where \(u \) denotes a primitive idempotent of \(FG \). \(H \) must be \(p \)-regular, since if \(u = \sum_{g \in G} \alpha_g g \), then \(\alpha_g \) is constant on the cosets of \(H \), because for \(b \in H \), \(bu = u \). Thus \(u = \sum_{i=1}^r \alpha_{i,b} g_i \), where \(g_1, \ldots, g_r \) are coset representatives of \(H \) in \(G \), and

\[u = u^2 = |H| \sum_{i,j} \alpha_{i,b} \alpha_{j,b} g_i \left(\sum_{b \in H} h \right), \]

which would be 0 if \(p \) divides \(|H| \).

Hence one can form \(s_H = |H|^{-1} \sum_{b \in H} h \) and one has \(s_H u = u \). But \(s_H \) is a central idempotent and \(s_H = \sum_{N(e) \supseteq H} e_i \). Since \(s_H u = u \), the block idempotent \(e \) must occur in the sum, therefore \(N(e) \geq H \).

(b) \(KG\hat{e} \) is the direct sum of those simple ideals, which have irreducible modules belonging to \(B \leftrightarrow e \). Hence the intersection of the kernels of the irreducible \(K \)-representations belonging to \(B \leftrightarrow e \) is \(\{ g \in G | g\hat{e} = \hat{e} \} \). Since \(\hat{e} \) is mapped onto \(e \) under the natural map \(RG \rightarrow FG \), one has obviously \(\{ g \in G | g\hat{e} = \hat{e} \} \subseteq N(e) \). Conversely, let \(x \in N(e) \), hence \(xe = e \). We denote the unique maximal ideal of \(R \) by \(\pi R \). If \(xe \neq e \), there is a maximal number \(k > 1 \) such that \(xe - e \in \pi^k R G \). Let \(\hat{e} = \sum_{g \in G} \alpha_g g \) (\(\alpha_g \in R \)); then \(\alpha_{\hat{e}} = \alpha_{x\hat{e}} = \cdots = \alpha_{x^{m-1}g} \mod(\pi^k) \), where \(m \) is the order of \(x \). Hence, if \(g_1, \ldots, g_r \) are coset representatives of \(\langle x \rangle \) in \(G \),

\[e = \sum_{i=1}^r (\alpha_{i,b} (1 + x + \cdots + x^{m-1}) + b_i) g_i \]

with \(b_i \in \pi^k R G \) and \(\alpha_{i,b} = \alpha_{i,x\hat{e}} \). But then
\[x^e - e = (x^e - e)\bar{e} = \sum_{i=1}^{r} (x^e - e)b_i g_i \in \pi^{2k} RG, \]

a contradiction.

The natural question—Which \(p \)-regular normal subgroups \(H \) can be kernels of blocks?—can be reduced to the case \(H = \{1\} \). \(FG \) has a block with kernel \(H \) if and only if \(H \) is \(p \)-regular and \(F(G/H) \) has a block with kernel \(\{1\} \). This follows from the fact that if \(H \) is \(p \)-regular and \(s_H = |H|^{-1}\sum h \in H h \), then \(FG = FGs_H \oplus FG(1 - s_H) \), where \(FGs_H \cong F(G/H) \) is the direct sum of all block ideals of \(FG \) with kernels containing \(H \).

Proposition 2. \(FG \) has a block with kernel \(\{1\} \) if and only if the maximal \(p \)-regular normal subgroup \(O_p(Soc(G)) \) of the socle of \(G \) is generated by one class of conjugate elements of \(G \).

For the case \(p = 0 \) or \(p \) a prime not dividing the order of \(G \) this proposition contains the theorem of Gaschütz [2] (see also Žmud [5]) on the existence of a faithful irreducible representation; for in this case the kernel of a block is simply the kernel of an irreducible representation, and \(O_p(Soc(G)) = Soc(G) \).

Proof of Proposition 2. It was shown in [4] that if \(FG \) has a block with kernel \(\{1\} \) then the same is true also for \(E G \), where \(E \) is any field with the same characteristic as \(F \). Hence one can assume that \(F \) is a splitting field for \(G \).

Let \(\Phi_i \ (1 \leq i \leq r) \) be the characters of the principal indecomposable representations of \(FG \) and \(\phi_i(1) \) be the degrees of the corresponding irreducible representations of \(FG \). If \(H \) is a \(p \)-regular normal subgroup of \(G \), it follows from the orthogonality relations for \(G/H \) that

\[
\sum_{N(\Phi_i) \geq H} \phi_i(1)\Phi_i(x) = \begin{cases} |G/H| & \text{if } x \in H, \\ 0 & \text{if } x \not\in H, \end{cases}
\]

where the sum ranges over all \(i \) such that the kernel \(N(\Phi_i) \) contains \(H \).

If \(M_1, \ldots, M_m \) are the minimal normal \(p \)-regular subgroups of \(G \), then

\[
\psi(x) = \sum_{N(\Phi_i) = \{1\}} \phi_i(1)\Phi_i(x)
= \sum_{i=1}^{r} \phi_i(1)\Phi_i(x) + \sum_{k=1}^{m} (-1)^k \sum_{1 \leq j_1 < \cdots < j_k \leq m} \sum_{N(\Phi_i) \geq M_{j_1} \cdots M_{j_k}} \phi_i(1)\Phi_i(x),
\]
where an empty sum is understood to be 0. Hence

$$\psi(1) = |G| + \sum_{k=1}^{m} (-1)^k \sum_{1 \leq j_1 < \cdots < j_k \leq m} |G : M_{j_1} \cdots M_{j_k}|.$$

The lattice of normal subgroups of G, which are contained in $Q = O_p^*(\text{Soc}(G))$ has a duality ϵ such that $(MN)^\epsilon = M^\epsilon \cap N^\epsilon$, $(M \cap N)^\epsilon = M^\epsilon N^\epsilon$, and $|N^\epsilon| = |Q : N|$. If N_1, \ldots, N_m are the normal subgroups of G which are maximal in Q, then

$$\psi(1) = |G| + \sum_{k=1}^{m} (-1)^k \sum_{1 \leq j_1 < \cdots < j_k \leq m} |G : N_{j_1}^\epsilon \cdots N_{j_k}^\epsilon|.$$

Since $|Q : N_{j_1}^\epsilon \cdots N_{j_k}^\epsilon| = |N_{j_1} \cap \cdots \cap N_{j_k}|$, it follows that

$$\psi(1) = |G : Q| \left| Q \bigcap \bigcup_{j=1}^{m} N_j \right|,$$

and this is different from zero if and only if Q is generated by one class of conjugate elements of G. Q.E.D.

REFERENCES

5. È. M. Žmud', On the kernels of homomorphisms of linear representations of a finite group, Mat. Sb. 44(86) (1958), 353–408. (Russian) MR 20 #5236.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF GIESSEN, 63 GIESSEN, FEDERAL REPUBLIC OF GERMANY