Absolutely closed maps
HTML articles powered by AMS MathViewer
- by Louis Friedler
- Proc. Amer. Math. Soc. 51 (1975), 186-190
- DOI: https://doi.org/10.1090/S0002-9939-1975-0367898-2
- PDF | Request permission
Abstract:
An example is given of a continuous function $f:X \to Y$ which is closed, has point inverses $H$-closed, but which can be extended to a continuous function $F:Z \to Y$ for some $Z$ which has $X$ as a proper dense subset. A partial characterization of nonextendable functions is given in terms similar to Bourbaki’s theorem that perfect maps $f:X \to Y$ are those for which $f \times {i_Z}:X \times Z \to Y \times Z$ is a closed map for all spaces $Z$.References
- A. Błaszczyk and J. Mioduszewski, On factorization of maps through $\tau X$, Colloq. Math. 23 (1971), 45–52. MR 305331, DOI 10.4064/cm-23-1-45-52 N. Bourbaki, Eléments de mathématique. I: Les structures fondamentales de l’analyse. Livre III: Topologie générale, Actualités Sci. Indust., nos. 1029, 1045, 1084, 1142, 1143, Hermann, Paris, 1947, 1948, 1949; English transl., Hermann, Paris; Addison-Wesley, Reading, Mass., 1966. MR 34 #5044b.
- R. F. Dickman Jr., Regular closed maps, Proc. Amer. Math. Soc. 39 (1973), 414–416. MR 315654, DOI 10.1090/S0002-9939-1973-0315654-1
- C. T. Scarborough, Closed graphs and closed projections, Proc. Amer. Math. Soc. 20 (1969), 465–470. MR 250275, DOI 10.1090/S0002-9939-1969-0250275-X
- R. M. Stephenson Jr., Minimal first countable topologies, Trans. Amer. Math. Soc. 138 (1969), 115–127. MR 238261, DOI 10.1090/S0002-9947-1969-0238261-1
- Giovanni Viglino, Extensions of functions and spaces, Trans. Amer. Math. Soc. 179 (1973), 61–69. MR 322785, DOI 10.1090/S0002-9947-1973-0322785-3
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 186-190
- MSC: Primary 54C10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0367898-2
- MathSciNet review: 0367898