Univalent functions with negative coefficients
HTML articles powered by AMS MathViewer
- by Herb Silverman
- Proc. Amer. Math. Soc. 51 (1975), 109-116
- DOI: https://doi.org/10.1090/S0002-9939-1975-0369678-0
- PDF | Request permission
Abstract:
Coefficient, distortion, covering, and coefficient inequalities are determined for univalent functions with negative coefficients that are starlike of order $\alpha$ and convex of order $\alpha$. Extreme points for these classes are also determined.References
- L. Brickman, T. H. MacGregor, and D. R. Wilken, Convex hulls of some classical families of univalent functions, Trans. Amer. Math. Soc. 156 (1971), 91–107. MR 274734, DOI 10.1090/S0002-9947-1971-0274734-2
- A. W. Goodman, Univalent functions and nonanalytic curves, Proc. Amer. Math. Soc. 8 (1957), 598–601. MR 86879, DOI 10.1090/S0002-9939-1957-0086879-9
- Thomas H. MacGregor, The radius of convexity for starlike functions of order ${1\over 2}$, Proc. Amer. Math. Soc. 14 (1963), 71–76. MR 150282, DOI 10.1090/S0002-9939-1963-0150282-6 —, A subordination for convex functions of order $\alpha$, J. London Math Soc. (to appear).
- A. Schild, On a class of functions schlicht in the unit circle, Proc. Amer. Math. Soc. 5 (1954), 115–120. MR 60592, DOI 10.1090/S0002-9939-1954-0060592-3
- Albert Schild, On a class of univalent, star shaped mappings, Proc. Amer. Math. Soc. 9 (1958), 751–757. MR 95954, DOI 10.1090/S0002-9939-1958-0095954-5
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 109-116
- MSC: Primary 30A32
- DOI: https://doi.org/10.1090/S0002-9939-1975-0369678-0
- MathSciNet review: 0369678