Oscillation criteria for second order nonlinear differential equations
Author:
Hiroshi Onose
Journal:
Proc. Amer. Math. Soc. 51 (1975), 67-73
MSC:
Primary 34C10
DOI:
https://doi.org/10.1090/S0002-9939-1975-0369813-4
MathSciNet review:
0369813
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Oscillation criteria are given for the second order nonlinear equation $y''(t) + a(t)f(y(t)) = 0$, where the coefficient $a(t)$ is not assumed to be nonnegative for all large values of $t$. These results are concerned with the interesting recent ones of Wong’s paper.
- Nam P. Bhatia, Some oscillation theorems for second order differential equations, J. Math. Anal. Appl. 15 (1966), 442–446. MR 203164, DOI https://doi.org/10.1016/0022-247X%2866%2990102-8
- L. E. Bobisud, Oscillation of nonlinear second-order equations, Proc. Amer. Math. Soc. 23 (1969), 501–505. MR 247179, DOI https://doi.org/10.1090/S0002-9939-1969-0247179-5 W. J. Coles, An oscillation criterion for second order linear differential equations, Proc. Amer. Math. Soc. 19 (1968), 755-759.
- Lynn Erbe, Oscillation theorems for second order nonlinear differential equations, Proc. Amer. Math. Soc. 24 (1970), 811–814. MR 252756, DOI https://doi.org/10.1090/S0002-9939-1970-0252756-X
- Philip Hartman, On non-oscillatory linear differential equations of second order, Amer. J. Math. 74 (1952), 389–400. MR 48667, DOI https://doi.org/10.2307/2372004
- I. V. Kamenev, Certain specifically nonlinear oscillation theorems, Mat. Zametki 10 (1971), 129–134 (Russian). MR 287077
- Walter Leighton, The detection of the oscillation of solutions of a second order linear differential equation, Duke Math. J. 17 (1950), 57–61. MR 32065 H. Onose, On oscillation of nonlinear second order equations, J. Math. Anal. Appl. 39 (1972), 122-124.
- Paul Waltman, An oscillation criterion for a nonlinear second order equation, J. Math. Anal. Appl. 10 (1965), 439–441. MR 173050, DOI https://doi.org/10.1016/0022-247X%2865%2990138-1
- Aurel Wintner, A criterion of oscillatory stability, Quart. Appl. Math. 7 (1949), 115–117. MR 28499, DOI https://doi.org/10.1090/S0033-569X-1949-28499-6
- James S. W. Wong, On two theorems of Waltman, SIAM J. Appl. Math. 14 (1966), 724–728. MR 206409, DOI https://doi.org/10.1137/0114061
- James S. W. Wong, A second order nonlinear oscillation theorem, Proc. Amer. Math. Soc. 40 (1973), 487–491. MR 318585, DOI https://doi.org/10.1090/S0002-9939-1973-0318585-6
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34C10
Retrieve articles in all journals with MSC: 34C10
Additional Information
Keywords:
Second order equations,
nonlinear,
oscillatory
Article copyright:
© Copyright 1975
American Mathematical Society