PRODUCTS OF STEINER’S QUASI-PROXIMITY SPACES

E. HAYASHI

ABSTRACT. E. F. Steiner introduced a quasi-proximity δ satisfying $A \delta B$ iff $\{x\} \delta B$ for some x of A. The purpose of this paper is to describe the Tychonoff product of topologies in terms of Steiner’s quasi-proximities. Whenever (X_a, δ_a) is the Steiner quasi-proximity space, the product proximity on $X = \prod X_a$ can be given, by using the concept of finite coverings, as the smallest proximity on X which makes each projection δ-continuous.

Introduction. E. F. Steiner [2] introduced a quasi-proximity δ satisfying $A \delta B$ iff $\{a\} \delta B$ for some a of A. This note is devoted to the study of a product proximity on $X = \prod X_a$, where each (X_a, δ_a) is the above Steiner quasi-proximity space. As F. W. Stevenson [3] pointed out, there are three equivalent definitions of a product proximity. Especially, Császár and Leader defined a product proximity by using finite coverings [3]. Unfortunately, for Steiner’s quasi-proximity, it seems difficult to us to define the product proximity in the same way as Császár and Leader. We must modify the definition of a product proximity in our case (Definition 2). We then show that the Tychonoff product topology can be induced on the cartesian product $X = \prod X_a$ in terms of the quasi-proximity mentioned above.

The reader is referred to S. A. Naimpally and B. D. Warrack [1] for definitions not given here.

Preliminary definitions and lemmas.

Definition 1. A binary relation δ defined on the power set of X is called a Steiner’s or S-quasi-proximity on X iff δ satisfies the axioms below.

(I) For every $A \subset X$, $A \delta \phi$ (ϕ means "not-δ”).

(II) $A \delta B$ iff $\{a\} \delta B$ for some $a \in A$.

(III) $A \delta (B \cup C)$ iff $A \delta B$ or $A \delta C$.

(IV) For every $x \in X$, $\{x\} \delta \{x\}$.

(V) $A \delta B$ implies that there exists a subset C such that $A \delta C$ and $(X - C) \delta B$.

Received by the editors May 25, 1974.

AMS (MOS) subject classifications (1970). Primary 54E05.

Key words and phrases. Quasi-proximity, product proximity, δ-continuous maps.
Remark 1. Clearly Axiom (II) is equivalent to Axiom (II') below.

(II') For an arbitrary index set \(\Lambda \),

\[
\left(\bigcup_{\lambda \in \Lambda} A_\lambda \right) \delta B \iff A_{\mu} \delta B \text{ for some } \mu \in \Lambda.
\]

Furthermore, in the \(S \)-quasi-proximity we can replace Axiom (V) with Axiom (V') below.

(V') If \(x \ll A \), then there exists a set \(B \) such that \(x \ll B \ll A \). (In general, \(P \ll Q \) means \(P \delta (X - Q) \) and \(Q \) is said to be a \(\delta \)-neighborhood of \(P \).)

In fact, it is easily seen that Axiom (V) implies Axiom (V'). Conversely we show that Axiom (V) follows from Axioms (I)--(IV) and (V'). Suppose \(A \delta B \). By Axiom (II), \(\{x\} \delta B \), i.e. \(x \ll X - B \) for each \(x \in A \). Then it follows from Axiom (V') that there is a set \(C_x \) such that \(x \ll C_x \ll X - B \) for each \(x \in A \). Since \(\{x\} \delta (X - C_x) \) for each \(x \in A \),

\[
\{x\} \delta \left(X - \bigcup_{x \in A} C_x \right)
\]

by Axiom (III).

Setting \(\bigcup_{x \in A} C_x = C \), we obtain \(A \delta (X - C) \) by Axiom (II). On the other hand, since \(C_x \delta B \) for each \(x \in A \), we have \(C \delta B \) by Axiom (II'). Thus Axiom (V) surely holds.

Let \((X, \delta) \) be an \(S \)-quasi-proximity space. For every \(A \subset X \), we set \(c(A) = \{x \in X : \{x\} \delta A\} \). Then the operator \(c \) is a topological closure operator and so \(X \) is a topological space \([2]\). This topological space is denoted by \((X, c) \). The proof of the following is trivial.

Lemma 1. (1) If \(A \delta B \) and \(B \subset C \), then \(A \delta C \).

(2) If \(A \delta B \) and \(A \subset C \), then \(C \delta B \).

(3) If \(A \delta B \), then \(A \cap B = \emptyset \).

Lemma 2. For subsets \(A \) and \(B \) of an \(S \)-quasi-proximity space \((X, c) \),

\[
A \delta B \iff A \cap c(B) \neq \emptyset \iff A \delta c(B).
\]

Proof. This follows readily from Axiom (II).

The following is a direct result of Lemma 2.

Lemma 3. Every topological space \((X, \tau) \) with the topology \(\tau \) has a
compatible S-quasi-proximity \(\delta \) defined by

\[A \delta B \iff A \cap \overline{B} \neq \emptyset, \]

where \(\overline{B} \) denotes the \(r \)-closure of \(B \).

The following lemma shows that in S-quasi-proximity spaces a \(\delta \)-continuous mapping and a continuous mapping are equivalent.

Lemma 4. Let \(f \) be a mapping of an S-quasi-proximity space \((X, \delta_1)\) into an S-quasi-proximity space \((Y, \delta_2)\). Then \(f \) is \(\delta \)-continuous if and only if it is a continuous mapping of the topological space \((X, r(\delta_1))\) into the topological space \((Y, r(\delta_2))\).

Proof. Suppose that \(f \) is \(\delta \)-continuous and that \(x \) is any point of \(c_1(A) \). Then \(\{x\} \delta_1 A \), which implies \(f(x) \delta_2 f(A) \). It follows that \(f(x) \in c_2(f(A)) \) and so \(f(c_1(A)) \subseteq c_2(f(A)) \). (\(c_1 \) and \(c_2 \) denote the closure operators in \((X, \delta_1)\) and \((Y, \delta_2)\) respectively.) Conversely let \(f \) be continuous and let \(A \delta_1 B \). Since, by Lemma 2 \(A \cap c_1(B) \neq \emptyset \), it follows that \(f(A) \cap c_2(f(B)) \neq \emptyset \). From the continuity of \(f \), we obtain that \(f(A) \subseteq c_2(f(B)) \), so that \(f \) is \(\delta \)-continuous. Q. E. D.

Proximity products. In the present section we attempt to obtain a direct construction of an S-quasi-proximity product space by a proximal approach. As we stated in the introduction, we modify the definition of Császár and Leader for the product proximity.

Definition 2. Let \(\{(X_a, \delta_a): a \in A\} \) be an arbitrary family of S-quasi-proximity spaces. Let \(X = \prod_{a \in A} X_a \) denote the cartesian product of these spaces. A binary relation \(\delta \) on the power set of \(X \) is defined as follows:

Let \(A \) and \(B \) be subsets of \(X \). Define \(A \delta B \) iff there is a point \(x_0 \in A \) such that, for any finite covering \(\{B_i: i = 1, 2, \ldots, n\} \) of \(B \), there exists a set \(B_i \) satisfying \(P_a[x_0] \delta_a P_a[B_i] \) for each \(a \in A \), where each \(P_a \) denotes the projection from \(X \) to \(X_a \).

Remark 2. Leader [3] defined a product proximity as follows: For \(A, B \subseteq X \), \(A \delta B \) iff for any finite coverings \(\{A_i: i = 1, 2, \ldots, m\} \) and \(\{B_j: j = 1, 2, \ldots, n\} \) of \(A \) and \(B \) respectively, there is an \(A_i \) and a \(B_j \) such that \(P_a[A_i] \delta_a P_a[B_j] \) for each \(a \in A \). But in order to prove that \(\delta \) satisfies Axiom (II), it seems difficult to use Leader's definition for the S-quasi-proximity.

Lemma 5. Let each \((X_a, \delta_a) \) be an S-quasi-proximity space and let \(A \)
and B be subsets of $X = \prod X_a$. Then $A \delta B$ implies $P_a[A] \delta_a P_a[B]$ for each $a \in \Lambda$.

Proof. Suppose $A \delta B$. Since $\{B\}$ itself is a finite covering of B, there is a point x_0 of A such that $P_a[x_0] \delta_a P_a[B]$ for each $a \in \Lambda$. Applying Axiom (II) to each δ_a, we have $P_a[A] \delta_a P_a[B]$ for each $a \in \Lambda$. Q. E. D.

It follows from Lemma 5 that each projection P_a is δ-continuous and hence it is also continuous by Lemma 4 if X becomes an S-quasi-proximity space. Now we prove the main theorem.

Theorem 1. The binary relation δ given by Definition 2 is an S-quasi-proximity on the cartesian product X. This space (X, δ) is said to be an S-quasi-proximity product space.

Proof. It suffices to show that δ satisfies Axioms (I)–(IV) of Definition 1 and Axiom (V)’ of Remark 1. It is easy to see that δ satisfies Axiom (I).

Axiom (II): Suppose $A \delta B$. If $x_0 \in A$ fulfills the condition in Definition 2, then clearly $x_0 \delta B$.

Conversely suppose that $\{x_0\} \delta B$ for some x_0 of A. If $\{B_i: i = 1, 2, \ldots, n\}$ is any finite covering of B, then there is a set B_i such that $P_a[x_0] \delta_a P_a[B_i]$ for each $a \in \Lambda$. By Definition 2, this means $A \delta B$.

Axiom (III): Suppose $A \delta B$ and let $x_0 \in A$ satisfy the condition in Definition 2. If $\{D_i: i = 1, 2, \ldots, n\}$ is any finite covering of $B \cup C$, then it is a covering of B as well; hence there is an i such that $P_a[x_0] \delta_a P_a[D_i]$ for each $a \in \Lambda$. Thus $A \delta (B \cup C)$.

Conversely suppose $A \delta B$ and $A \delta C$. Then for any given $x \in A$, there are finite coverings $\{D_i: i = 1, 2, \ldots, n\}$ and $\{D_j: j = n + 1, \ldots, n + p\}$ of B and C respectively such that

$$P_a[x] \delta_a P_a[D_i] \quad \text{for } a = t_i \in \Lambda,$$

$$P_a[x] \delta_a P_a[D_j] \quad \text{for } a = s_j \in \Lambda,$$

where $i = 1, 2, \ldots, n$ and $j = n + 1, \ldots, n + p$. Since $\{D_k: k = 1, 2, \ldots, n + p\}$ is a covering of $B \cup C$, we conclude that $A \delta (B \cup C)$.

Axiom (IV): Let x be a point of X and let A be any set such that $x \in A$. Since $P_a[x] \in P_a[A]$ for each $a \in \Lambda$, by Lemma 1(3) we have

$$P_a[x] \delta_a P_a[A] \quad \text{for each } a \in \Lambda.$$
Equivalently $P_a[x] \ll X_a - P_a[A_i]$. Since each δ_a satisfies Axiom (V'), there exist G_i ($i = 1, 2, \ldots, n$) such that

\[(1) \quad P_a[x] \ll G_i \ll X_a - P_a[A_i] \quad \text{for } a = t_i \in \Lambda. \]

From the first half of (1), we have

\[(2) \quad P_a[x] \overline{\delta}_a (X_a - G_i). \]

Now we set

\[K_i = P_a^{-1}[X_a - G_i] = X - P_a^{-1}[G_i] \]

and set $K = \bigcup_{i=1}^{n} K_i$. It follows from (2) that

\[P_a[x] \overline{\delta}_a P_a[K_i] \quad \text{for } a = t_i \in \Lambda, \quad i = 1, 2, \ldots, n. \]

Since $\{K_i: i = 1, 2, \ldots, n\}$ is a finite covering of K, we obtain $\{x\} \overline{\delta} K$. This implies

\[(3) \quad x \ll X - K. \]

Next, from the second half of (1), we have

\[(4) \quad G_i \overline{\delta}_a P_a[A_i] \quad \text{for some } a = t_i, \quad i = 1, 2, \ldots, n. \]

On the other hand, since

\[X - K = \bigcap_{j=1}^{n} P_a^{-1}[G_j] \quad (a = t_j), \]

it follows that

\[P_a[X - K] = P_a \left\{ \bigcap_{j=1}^{n} P_a^{-1}[G_j] \right\} \subset G_i \quad \text{for } a = t_i. \]

Hence for every point y of $X - K$,

\[P_a[y] \in G_i \quad (a = t_i; \ i = 1, 2, \ldots, n). \]

By (4) and Lemma 1(2), we have therefore $P_a[y] \overline{\delta}_a P_a[A_i]$ for every y of $X - K$, where $a = t_i; \ i = 1, 2, \ldots, n$. Because $\{A_i: i = 1, 2, \ldots, n\}$ is a finite covering of $(X - A)$, we get that

\[(5) \quad (X - K) \overline{\delta} (X - A), \quad \text{that is, } \ X - K \ll A. \]

Relations (3) and (5) together show that $\overline{\delta}$ satisfies Axiom (V'). This completes the proof.
In view of Lemma 4, the following theorem shows that the Tychonoff product topology can be induced on an S-quasi-proximity product space $(X, \pi(\delta))$.

Theorem 2. The S-quasi-proximity δ on X given by Definition 2 is the smallest S-quasi-proximity for which each projection P_a is δ-continuous.

Proof. Let β be an arbitrary S-quasi-proximity on X such that each projection P_a is a δ-continuous mapping of (X, β) into (X_a, δ_a). Then we must show that $A \beta B$ implies $A \delta B$ for $A, B \subset X$. By Axiom (II), there is a point x_0 of A such that $\{x_0\} \beta B$. Given any finite covering $\{B_i: i = 1, 2, \ldots, n\}$ of B, we can choose a set B_i such that $\{x_0\} \beta B_i$ by Axiom (III). Since each P_a is δ-continuous, $P_a[x_0] \delta_a P_a[B_i]$ for each $a \in \Lambda$. Because of Definition 2, we can conclude $A \delta B$. Q. E. D.

Finally, the author would like to thank the referee who indicated the revision of Definition 2 and the proof of Theorem 1.

REFERENCES

