A FIXED POINT CRITERION FOR COMPACT T_2-SPACES

LOUIS A. TALMAN

ABSTRACT. We prove a fixed point theorem which has as conseque-
ces some theorems of W. G. Dotson, Jr., [2], [3] and of K. Baron and J.
Matkowski [1].

1. Introduction and definitions. In recent articles, W. G. Dotson, Jr.,
[2], [3] as well as K. Baron and J. Matkowski [1] have extended the Banach
contraction principle to nonexpansive self-mappings of certain classes of
compact metric spaces. The purpose of this paper is to present an extension
of the methods of these authors to certain self-mappings of arbitrary compact
T_2-spaces.

Let X be a separated uniform space (see [5] for terminology and nota-
tion). A self-mapping of X is any function from X into itself. (Note that we
do not require any continuity of a self-mapping.) The symbol X^X will denote
the space of all self-mappings of X equipped with the topology of uniform
convergence on X. When $\phi \in X^X$ and $F \subseteq X^X$, we will say that ϕ has fixed
points modulo F provided that, for each $f \in F$, at least one of the functions
$\phi \circ f$ and $f \circ \phi$ has a fixed point.

We shall use the following Proposition, which is an easy consequence
of the definitions.

Proposition. Let $\{x_\alpha : \alpha \in A\}$ be a net in a uniform space, X, which
converges to some point $x_0 \in X$. If $\{f_\alpha : \alpha \in A\}$ is a net in X^X which con-
verges to a uniformly continuous f in X^X, then $\{f_\alpha(x_\alpha) : \alpha \in A\}$ converges
to $f(x_0)$ in X.

2. The main theorem. We are now ready to give the main theorem. First,
recall that a compact T_2-space is, in a canonical way, a separated uniform
space, so that the notions of the previous section are meaningful in such a
space.

Theorem 1. Let X be a compact T_2-space, and let ϕ be a continuous
self-mapping of X. If there is a net $\{f_\alpha : \alpha \in A\}$ in X^X such that (i) ϕ has
fixed points modulo \(\{f_\alpha : \alpha \in A\} \), and (ii) \(\{f_\alpha : \alpha \in A\} \) converges to the identity function, \(\text{id}_X \), on \(X \), then \(\phi \) has a fixed point.

Proof. Condition (ii) requires that \(\text{id}_X \) be in the closure, in the topology on \(X^X \), of the collection \(F = \{f_\alpha : \alpha \in A\} \). If we let \(F_R = \{f_\alpha \in F : f_\alpha \circ \phi \) has a fixed point\} and \(F_L = \{f_\alpha \in F : \phi \circ f_\alpha \) has a fixed point\}, then, by (i), \(F = F_R \cup F_L \). Thus, we can select a subnet \(\{f_\beta : \beta \in B\} \) of \(F \) which converges to \(\text{id}_X \) and is entirely contained within \(F_R \) or \(F_L \). In the first case, we define \(\phi_\beta : X \to X \) for each \(\beta \in B \) by \(\phi_\beta(x) = f_\beta(\phi(x)) \); in the second case, we define \(\phi_\beta(x) = \phi(f_\beta(x)) \). In either case, for each \(\beta \in B \), there is an \(x_\beta \) in \(X \) such that \(\phi_\beta(x_\beta) = x_\beta \). Since \(X \) is compact, we may assume that \(\{x_\beta : \beta \in B\} \) converges to some \(x_0 \) in \(X \). But \(\{\phi_\beta : \beta \in B\} \) converges to \(\phi \) in \(X^X \), so application of the Proposition yields that \(x_0 = \lim x_\beta = \lim \phi_\beta(x_\beta) = \phi(x_0) \), and \(x_0 \) is a fixed point of \(\phi \).

3. Consequences. We now apply Theorem 1 in order to obtain some results due to Dotson and to Baron and Matkowski.

Theorem 2 (Dotson [3]). Let \(S \) be a subset of a Banach space \(E \), and equip \(S \) with the relative topology from the weak topology on \(E \). Suppose that \(S \), so equipped, is compact, and that there exists a continuous function \(F : S \times [0, 1] \to S \) such that (i) \(F(s, 1) = s \) for every \(s \in S \), and (ii) there is a self-mapping, \(\phi \), of \([0, 1] \) such that for every \(s_1, s_2 \) in \(S \) and for all \(t \) in \([0, 1] \) we have

\[
\| F(s_1, t) - F(s_2, t) \| \leq \phi(t) \| s_1 - s_2 \|.
\]

Then any continuous function \(\psi : S \to S \) which is nonexpansive with respect to \(\| \cdot \| \) has a fixed point.

Proof. For each \(n = 1, 2, \ldots, \) let \(t_n = n/(n + 1) \) and define \(\phi_n : S \to S \) by \(\phi_n(s) = F(s, t_n) \). It is easy to see that \(\{\phi_n\} \) converges in \(S^S \) to \(\text{id}_S \). All that remains is to show that any \(\psi \) which satisfies the hypotheses of the theorem must have fixed points modulo \(\{\phi_n\} \). To this end, let \(s_1, s_2 \) be in \(S \). Then for any \(n = 1, 2, \ldots, \), we have

\[
\| \phi_n(\psi(s_1)) - \phi_n(\psi(s_2)) \| \leq \phi(t_n) \| \psi(s_1) - \psi(s_2) \| \leq \phi(t_n) \| s_1 - s_2 \|.
\]

Since \(\phi(t_n) < 1 \) for every \(n \), we see that \(\phi_n \circ \psi \) is a contraction on \(S \) relative to the norm. But \(S \) is weakly compact, hence norm closed, and, therefore, norm complete. By the Banach contraction principle, \(\psi \circ \phi \) has a fixed point.

Theorem 2 yields as a corollary a fixed point theorem for nonexpansive
self-mappings of compact metric spaces which was first proved by Dotson[3] for nonconvex subsets of Banach spaces.

Corollary. Let X be a compact metric space with metric ρ, and suppose that there is a continuous function $F : X \times [0, 1] \to X$ such that (i) $F(x, 1) = x$ for every x in X, and (ii) there is a self-mapping, ϕ, of $[0, 1]$ such that for every x_1, x_2 in X and for all t in $[0, 1]$ we have

$$\rho(F(x_1, t), F(x_2, t)) \leq \phi(t)\rho(x_1, x_2).$$

Then any nonexpansive self-mapping of X has a fixed point.

Proof. It is well known that any metric space can be embedded isometrically in a Banach space (see, e.g., [4, XII, 5.2, p. 286]). Thus, we may consider X to be a compact subset of a Banach space E with metric induced by a norm $\| \cdot \|$. The compactness of X guarantees that the norm topology coincides with the weak topology on X ([4, XI, 2.1, p. 226] or [5, 5.8, p. 141]), and the conclusion follows from Theorem 2.

Following Baron and Matkowski [1], we say that a metric space (X, ρ) is an S-space if there exists an x_0 in X such that for every t in $[0, 1]$ there is a ρ-contractive self-mapping f_t of X for which the inequality $\rho(f_t(x), x) \leq (1 - t)\rho(x_0, x)$ holds for every x in X.

Theorem 3 (Baron and Matkowski [1]). Every nonexpansive self-mapping of a compact S-space has a fixed point.

Proof. Let (X, ρ) be a compact S-space, and let F be a nonexpansive self-mapping of X. If the interval $[0, 1]$ is equipped with its usual order, then $\{ f_t : t \in [0, 1] \}$, where f_t is as in the definition of S-space, is a net in X^X which converges to id_X. Moreover, $f_t \circ F$ is easily seen to be a contraction on X for each t in $[0, 1]$, so F has fixed points modulo $\{ f_t : t \in [0, 1] \}$.

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF KANSAS, LAWRENCE, KANSAS