Axiom of choice and complementation
Author:
Radu Diaconescu
Journal:
Proc. Amer. Math. Soc. 51 (1975), 176-178
MSC:
Primary 02K20; Secondary 02K10, 18B05
DOI:
https://doi.org/10.1090/S0002-9939-1975-0373893-X
MathSciNet review:
0373893
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that an intuitionistic model of set theory with the axiom of choice has to be a classical one.
- [1] F. William Lawvere, Introduction, Toposes, algebraic geometry and logic (Conf., Dalhousie Univ., Halifax, N.S., 1971) Springer, Berlin, 1972, pp. 1–12. Lecture Notes in Math., Vol. 274. MR 0376798
- [2] M. Tierney, Axiomatic sheaf theory: some constructions and applications, Categories and commutative algebra (C.I.M.E., III Ciclo, Varenna, 1971), Edizioni Cremonese, Rome, 1973, pp. 249–326. MR 0354800
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02K20, 02K10, 18B05
Retrieve articles in all journals with MSC: 02K20, 02K10, 18B05
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1975-0373893-X
Article copyright:
© Copyright 1975
American Mathematical Society


