Characterizations of bounded mean oscillation
HTML articles powered by AMS MathViewer
- by Stephen Jay Berman
- Proc. Amer. Math. Soc. 51 (1975), 117-122
- DOI: https://doi.org/10.1090/S0002-9939-1975-0374805-5
- PDF | Request permission
Abstract:
Recall that an integrable function $f$ on a cube ${Q_0}$ in ${{\mathbf {R}}^n}$ is said to be of bounded mean oscillation if there is a constant $K$ such that for every parallel subcube $Q$ of ${Q_0}$ there exists a constant ${a_Q}$ such that $\int _Q {|f - {a_Q}| \leq K|Q|}$, where $|Q|$ denotes the volume of $Q$. We prove here that if there is an integer $d$ and a constant $K$ such that for every parallel subcube $Q$ of ${Q_0}$ there exists a polynomial ${p_Q}$ of degree $\leq d$ such that $\int _Q {|f - {p_Q}| \leq K|Q|}$, then $f$ is of bounded mean oscillation.References
- S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 18 (1964), 137–160 (Italian). MR 167862
- F. John and L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961), 415–426. MR 131498, DOI 10.1002/cpa.3160140317
- G. G. Lorentz, Approximation of functions, Holt, Rinehart and Winston, New York-Chicago, Ill.-Toronto, Ont., 1966. MR 0213785
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 117-122
- MSC: Primary 42A92; Secondary 46E30
- DOI: https://doi.org/10.1090/S0002-9939-1975-0374805-5
- MathSciNet review: 0374805