Hyponormal operators with infinite essential spectrum
HTML articles powered by AMS MathViewer
- by Hong W. Kim
- Proc. Amer. Math. Soc. 51 (1975), 44-48
- DOI: https://doi.org/10.1090/S0002-9939-1975-0374974-7
- PDF | Request permission
Abstract:
It is shown that if $T$ is an essentially hyponormal operator (i.e., the image of ${T^ \ast }T - T{T^ \ast }$ in the Calkin algebra is a positive element) in $\mathfrak {L}(\mathcal {H})$, and if the left essential spectrum of $T$ is infinite, then $R{({\delta _T})^ - } + \{ {T^ \ast }\} ’$ is not norm dense in $\mathfrak {L}(\mathcal {H})$, where $R{({\delta _T})^ - }$ denotes the norm closure of the range of derivation induced by $T$, and $\{ {T^ \ast }\} ’$ denotes the commutant of ${T^ \ast }$.References
- Joel Anderson, On normal derivations, Proc. Amer. Math. Soc. 38 (1973), 135–140. MR 312313, DOI 10.1090/S0002-9939-1973-0312313-6
- J. H. Anderson, Derivation ranges and the identity, Bull. Amer. Math. Soc. 79 (1973), 705–708. MR 322518, DOI 10.1090/S0002-9904-1973-13271-9
- Hong W. Kim, On compact operators in the weak closure of the range of a derivation, Proc. Amer. Math. Soc. 40 (1973), 482–486. MR 318956, DOI 10.1090/S0002-9939-1973-0318956-8
- David C. Kleinecke, On operator commutators, Proc. Amer. Math. Soc. 8 (1957), 535–536. MR 87914, DOI 10.1090/S0002-9939-1957-0087914-4
- Carl Pearcy and Norberto Salinas, Compact perturbations of seminormal operators, Indiana Univ. Math. J. 22 (1972/73), 789–793. MR 313851, DOI 10.1512/iumj.1973.22.22064
- Norberto Salinas, Reducing essential eigenvalues, Duke Math. J. 40 (1973), 561–580. MR 390816
- F. V. Širokov, Proof of a conjecture of Kaplansky, Uspehi Mat. Nauk (N.S.) 11 (1956), no. 4(70), 167–168 (Russian). MR 0087913 Robert Earl Weber, Derivation ranges, Thesis, Indiana University, 1972.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 44-48
- MSC: Primary 47B20
- DOI: https://doi.org/10.1090/S0002-9939-1975-0374974-7
- MathSciNet review: 0374974