Minimal $N$-compact spaces
Authors:
K. P. S. Bhaskara Rao and Asit Baran Raha
Journal:
Proc. Amer. Math. Soc. 51 (1975), 209-212
MSC:
Primary 54D25
DOI:
https://doi.org/10.1090/S0002-9939-1975-0375233-9
MathSciNet review:
0375233
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this note it is established that minimal $N$-compact spaces are compact.
- Nicolas Bourbaki, Espaces minimaux et espaces complètement séparés, C. R. Acad. Sci. Paris 212 (1941), 215–218 (French). MR 5322
- Kim-peu Chew, A characterization of $N$-compact spaces, Proc. Amer. Math. Soc. 26 (1970), 679–682. MR 267534, DOI https://doi.org/10.1090/S0002-9939-1970-0267534-5
- Horst Herrlich, ${\mathfrak E}$-kompakte Räume, Math. Z. 96 (1967), 228–255 (German). MR 205218, DOI https://doi.org/10.1007/BF01124082
- S. Mrówka, Further results on $E$-compact spaces. I, Acta Math. 120 (1968), 161–185. MR 226576, DOI https://doi.org/10.1007/BF02394609
- Asit Baran Raha, Minimal realcompact spaces, Colloq. Math. 24 (1971/72), 219–223. MR 305352, DOI https://doi.org/10.4064/cm-24-2-219-223
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D25
Retrieve articles in all journals with MSC: 54D25
Additional Information
Keywords:
<IMG WIDTH="22" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img2.gif" ALT="$E$">-compact,
<IMG WIDTH="22" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="$E$">-completely regular,
<IMG WIDTH="24" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img3.gif" ALT="$N$">-compact,
clopen ultrafilter with countable intersection property
Article copyright:
© Copyright 1975
American Mathematical Society