## On homogeneous hereditarily unicoherent continua

HTML articles powered by AMS MathViewer

- by G. R. Gordh PDF
- Proc. Amer. Math. Soc.
**51**(1975), 198-202 Request permission

## Abstract:

Let $\mathfrak {M}$ denote the class of all hereditarily unicoherent Hausdorff continua in which each indecomposable subcontinuum is irreducible. It is shown that if the continuum $M$ in $\mathfrak {M}$ is decomposable, then the set of weak terminal points of $M$ is a nonempty, proper subset. The following generalization of a theorem of F. Burton Jones is an immediate corollary: if the continuum $M$ in $\mathfrak {M}$ is homogeneous, then $M$ is indecomposable. As an application, it is proved that if $X$ is a homogenous, hereditarily unicoherent Hausdorff continuum which is an image of an ordered compactum, then $X$ is an indecomposable metrizable continuum.## References

- David P. Bellamy,
*Composants of Hausdorff indecomposable continua; a mapping approach*, Pacific J. Math.**47**(1973), 303–309. MR**331345** - G. R. Gordh Jr.,
*Monotone decompositions of irreducible Hausdorff continua*, Pacific J. Math.**36**(1971), 647–658. MR**281163**
—, - G. R. Gordh Jr.,
*Terminal subcontinua of hereditarily unicoherent continua*, Pacific J. Math.**47**(1973), 457–464. MR**362268** - G. R. Gordh Jr.,
*Indecomposable Hausdorff continua and mappings of connected linearly ordered spaces*, Glasnik Mat. Ser. III**9(29)**(1974), 137–139 (English, with Serbo-Croatian summary). MR**350710** - John G. Hocking and Gail S. Young,
*Topology*, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR**0125557** - F. Burton Jones,
*Certain homogeneous unicoherent indecomposable continua*, Proc. Amer. Math. Soc.**2**(1951), 855–859. MR**45372**, DOI 10.1090/S0002-9939-1951-0045372-4 - F. Burton Jones,
*Homogeneous plane continua*, Proceedings of the Auburn Topology Conference (Auburn Univ., Auburn, Ala., 1969; dedicated to F. Burton Jones on the occasion of his 60th birthday), Auburn Univ., Auburn, Ala., 1969, pp. 46–56. MR**0391040**
S. Mardešić, - Harlan C. Miller,
*On unicoherent continua*, Trans. Amer. Math. Soc.**69**(1950), 179–194. MR**36498**, DOI 10.1090/S0002-9947-1950-0036498-3 - L. B. Treybig,
*Concerning homogeneity in totally ordered, connected topological space*, Pacific J. Math.**13**(1963), 1417–1421. MR**159309** - L. B. Treybig,
*Concerning continua which are continuous images of compact ordered spaces*, Duke Math. J.**32**(1965), 417–422. MR**187220**

*Indecomposable Hausdorff continua and mappings of connected linearly ordered spaces*, Proc. Univ. of Oklahoma Conf. on General Topology, 1972.

*On the Hahn-Mazurkiewicz problem in nonmetric spaces*, Proc. Second Prague Topological Sympos., 1966, pp. 248-255.

## Additional Information

- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**51**(1975), 198-202 - MSC: Primary 54F20
- DOI: https://doi.org/10.1090/S0002-9939-1975-0375254-6
- MathSciNet review: 0375254