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ABSTRACT.   We prove

Theorem.  Let A = AL*,, . • • , x   J   be a finitely generated integral

domain over a field k  of characteristic zero.   Then A  regular, i.e. the

local ring A     is regular for every prime ideal  q C A, is equivalent to

the following two conditions: (1) no prime of A of height greater than

one is differential, and (2) for all   4> e Horn, (A, /I), 4> e Der?(A)  if and

only if txp **£l Der£(A) u Der£_,'(A) (n= 1, 2, ...).

Here A denotes the Hochschild coboundary operator, U denotes

the cup product, and Der7(R) is the module of higher derivations of

rank n.

Introduction.   Throughout this paper, A = k[x^, ..., x   ] will denote a

finitely generated integral domain over a field  k of characteristic zero.   For

each  rc = 1, 2, . . . ,  we shall let Der?(A)  denote the A-module of all nth

order derivations of A  to A  which vanish on  k.  Thus, <p"  e Der?(A)  if and

only if 4> e Horn,(A, A), and for all aQ, ... , a    e A we have

<Mfl00l ■■■   ar)

(1) "
=  EH)5"1       Z       *i'"*i  ^Q---a     ■■■a.   -«„).

Is is
s = l ij   •••   is

The author refers the reader to [5j for the various properties of the modules

Der?(A)  which are used in this paper.

It follows from [5, Proposition 4 and Corollary 6.1] that any composite

5, . . . 8. (l < /' < rc) of /-derivations 8   eDer,(A) is an rath order derivation.
1 ;        — ' — ' i k

The A-submodule of Der?(A)  spanned by all such composites will be de-

noted by  der^(A).

We shall say that a prime ideal p in  A  is differential if 8(p) C p for

all 8 e Der, (A).  We shall call A   a regular ring if for all prime ideals  q Ç A,
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the local ring  A     is regular.  With these definitions, the author proved ll]

Theorem 1.   Let A = k[x,, . . . , x  ]  be a finitely generated integral

domain over a field k of characteristic zero.   Then A   is a regular ring if

and only if the following two properties are satisfied: (a) no prime p  of A

of height greater than one is differential and (b) Der?(A) = der?(A) for all n.

Thus, the arithmetic condition (b) on the modules Der?(A)  in the pres-

ence of (a) implies regularity.   The purpose of this paper is to show that the

condition (b) can be replaced by another quite different arithmetic condition

on the modules  Der?(A).

Recall that if <f>  and if/ are ¿-linear mappings of A into itself, then the

Hochschild coboundary  Af/>  of <ß is the ¿-bilinear mapping  A<f>: A x A —> A

given by AçS(a, b) = cf>{ab) - acf>{b) - b(f>(a) for all a, b £ A.   The cup product

cf> \J if/: A x A —* A is the ¿-bilinear mapping defined by 0 U if/(a, b) =

tß(a)tf/{b).  If  P and Q are two A-submodules of Hom^A, A), then  P U Q

will denote the set of all ¿-bilinear mappings of A x A —» A which are finite

sums of mappings of the form <f> U ifj for c/> £ P, if/ £ Q.

Let us set

B-l

ZW=  Z   Der^U) UDerp'U).
¿=i

Then it follows from [5, Proposition 3l that <f> £ Der"(/0 if A<£ e 2(A).

In [3]» Y. Ishibashi proved

Theorem 2.   Let  A  be a finitely generated algebra over a field k  such

that i2!(/4)  is A-projective for every  i > 1.   Let (f> £Hom,(Á, A).   Then

<f> eDer^(Á)  if and only if A<f> £ S(A).   Here 0^(4) denotes the A-module of

ith order differentials.

If A is a finitely generated integral domain over a field  ¿  of character-

istic zero, then we shall prove a partial converse to Theorem 2.

Main results.

Theorem 3.   Let A = k[x., . . . ; x   ]  be a finitely generated integral

domain over a field k  of characteristic zero.   Then A   is a regular ring if

and only if the following two conditions are satisfied:

(a) no prime ideal p of A  of height greater than one is differential; and

(b) for every positive integer n  and every (f> £ Horn, (A, A) <ß £

Der^(A) if and only if A<f> £ 1{A).

Proof.  Suppose  A  is a regular ring.   Then by Theorem 1, A   satisfies
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(a) and for each positive integer w, Der"(A) = der?(A).   But if every cf> e

Der?(A)  is a linear combination of composites of first order derivations, then

a simple induction argument shows  AçS eX(A).   Thus, one direction of Theo-

rem 3 follows immediately from Theorem 1.

Now suppose A   satisfies conditions (a) and (b).  We shall first show

that A  is integrally closed.   Let  Q  denote the quotient field of A, and let

A  denote the integral closure of A  in  Q.  Let us assume that A £ A.  Then

the conductor  C of A  is a proper ideal in A.   By [6, Corollary, p.  169], C

is a differential ideal.  Let p be an associated prime of  C.   Then by [7,

Theorem l], p is differential, and thus by condition (a)  p is a minimal prime

of A.

Now let  R = A    (A localized at p).  Then  R, the integral closure of R

in  Q, is given by  A      The conductor of  R in R is just  CR.  We note that

R is a semilocal ring with maximal ideals say  pv . . . , p .  If we set   V. =

R    , i' = 1, . . . , s, then   V.  is a discrete rank one valuation ring, and  R -

CYi=iVi-  Since n!fe(/^ = flfe(/l) ®A  Ap   fc, Theorem 9], and  Ap   is a flat A-

module, we see that Der^(R) = Der^(A)  <S>A A      So any derivation  (f> in

Der?(R) has the form  (l/s)</j    with  cf>    e Der?(A), s  an element of A  not in

p.   Thus, since  A  satisfies (b), one easily sees that if 0 £ Der?(R), then

A<7J el(R).  On the other hand, if <f> eHom^R, R), and Actj e 2(R), then it

follows from [5, Proposition 3] that (f> e Der?(R).   Thus, R   satisfies con-

dition (b) in the theorem.

Let the tanscendence degree of Q  over k be  r, and let Q,(T) denote

the module of first order differentials of any ^-algebra  T.   It follows from

14, Theorem 3 J  that i!,(V.) is a free V.-module necessarily of rank  r.  Since

R  is semilocal, it follows that Der, (R) is a free R-module of rank  r.  Let

d: R —> Q,,(R) denote the canonical derivation of  R into  fi, (R).

Since the depth of p is  r - 1, the quotient field of A/p has transcen-

dence degree   r - 1  over &.  Hence there exist elements  o.,, . . . ,  a _,   e

A — p  such that the quotient field of A/p  is a separable algebraic extension

of &(ä^, . . . , ci _.).  Here  ä. of course denotes the image of  ol . in A/p.

Note that the field F = k(oi^ . . . , a _   ) is contained in  R.

Using [8, Theorem 18, p. 45], we can find an element ß e ils=i?    such

that ß generates the maximal ideal in each local ring   V., i = 1, ... , S. It

now follows from the proof of [4, Theorem 3 ] and Nakayama's lemma that

{d(ß), ¿(a-j), . . . , d(ar_ t)\ is a free «-module basis of Q¿(R).  Since

Hom-(fîHR), R) = Derk(R), there exist derivations SQ, §,, . . . , S^_ t e

Der, (ß)  such that the following equations are satisfied:
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(2) S0(/3) = 1,    50(a.) = 0 = 8.(ß),       i = 1, ..., r - 1,

and

.,     .       |0     if  i¿j, i, j =1, ...,r-l,
8 .(a.) = <

11      11    if i = ;.

Clearly  {8Q, . . . , 8 _ j!  is a free R-module basis of Der, (R)  and also a Q-

algebra basis for U   = IDer?(Q).

If ç!, eDer*(P), then by [5, Theorem 15]  <f> £ Der^(Q).   Thus,  <f>  can be

written uniquely as a polynomial (with coefficients in  Q) in 5„, . . . , 8 _ ,

of degree less than or equal to  n.  Let / = (\s_ ,p , the Jacobson radical of

R.  We need the following

Lemma. Let <f> eDer*(ß). Then cf> = gi8Q, ..., S._,), M*ere g(XQ,..., X j)

is a polynomial in indeterminate s X. with coefficients in Q. Further-

more,  the coefficient of §!?   in  g   is an element of J  .

Proof. Only the last statement in the Lemma needs proof. We proceed

via induction on n. Suppose (f> £ Der, (P). By [6, Corollary, p. 169], CR is

differential under <f>. Since <f> eDer,(P), CR is differential under <f>. Thus,

every associated prime of CR is differential under (f). Since every p. is an

associated prime of CR, we have (f>(p.) C p., i = 1, . .. , s. Thus, (f>iß) £ ].

But if (f> - 5/.-QÖ.S., a. £ Q, then (f>(ß) = aQ. Thus the Lemma is proven in

the case n = 1.

We shall sketch the proof of the  n = 2  case before proceeding to the

inductive step.   Suppose cf> £ Der,(PJ.  Since  R  satisfies condition (b), there

exist A,, if/, £Dei,\R), and elements   e. £ R  such that for all a and  b in   R

we have

, ,* cf)(ab) = aif>{b) + b<ß(a) + ¿^ e ̂ ^X^b).

One easily checks using [5, Theorem 15] that (3) holds for all a, b £ Q.  Now

write

r-l r-1

(4) <¿=Z«¿S+    Z     ai i 8. 8       with a,«..   eQ
,_n •      ■      „        12   l\   l2 '       ' 1Z2
i = 0 i,,z2 = 0

and

r-l r-l

(5) *,- Z fitfie    \ = 52  yu8i    with ̂  y!7 e Q.
1=0 ¿=o

From the case « = 1, we have /¿0¿, yQ/ £ ].  Now substitute (4) and (5) into

(3) and obtain
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X  a    . (8. (a)8. (b) + 8. (b)8. (a))

ll"2

(6) i

If we now substitute  a = b = ß in (6), we get  2flQ0 = X.e./i-.y..  e /   .   Thus

a.    e J    and the case rc = 2 is complete.

Assume we have now proven the Lemma for  t = 1, 2, . . . , rc - 1 (rc > 3),

and consider </S e Der"(R).   Then by condition (b) there exist elements

e      e R and derivations tpy', AÍ'' e Der((R), ; = 1, .. . , rc - 1, such that for

all  a, b e R  we have

<f>(ab) = acf>(b) + btjjia) + £ enifj\l)(a)kf- l\b)

+ Zel2^2\a)^-2\b)+--. + Z^ln^^n-1)^K){b)-
I I

Now write  <f> as a polynomial  g(8n, . . . , <5 _ .)  of degree less than or equal

to  rc.   If the coefficient of S"  in  g is zero, then we have nothing to prove.

Thus, without loss of generality, we can assume that the coefficient of S'l

in  g  is not zero.  By the induction hypothesis, we can write each  ifj.1    and

\y    as a polynomial in  SQ, 5., . . . , 8 _ .   whose coefficient of S7Q  is in /'.

Say

(8)     +?±$*% + Z%%\\ + ''' + T.*[...t*< ■■■8-t.i
and

121/ 1/1 ;

We now substitute <f> = g(8Q.8 _ .)  and the expressions in (8) into (7).

Using the relations in (2), we can eliminate all terms in (7) which involve

any  8., i = I, . . . , r - 1.  Thus, (7) reduces to an equation of the form

¿ a.8[(ab) = J ¿ "i^n + HZ «,4H

(?) +z:*iltc,0'1«flwx*¿--1»0+-v. + »{[.':.-oM5-1x*)

+ »- + Z*l..-M""^o+*--+^.".."o*«s-1)u»S-v»-
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Here c ''       b ''      e ]' for each ;' = 1, ...,«— 1, when the number of zeros

appearing in the subscript is /'.

If we now make various substitutions of the form a - ß  , b = ß    and

eliminate sums which are equal, we easily see that a    £ J  .  Since  a    is the
* ' n n

coefficient of  8nQ  appearing in g, the proof is complete.

Using the Lemma, we can easily argue that A  is integrally closed.  Let

c £ CR.  Then c8"n £ Der"(ß) for every n.  Thus by the Lemma, c e /".  Since

c is arbitrary, we have  CR C\\   _.]n.  Since  /  is the Jacobson radical of

R, we have  f|°_ ,/* = 0.   Thus  CR = (0).  But we are assuming  A ^ A, and

thus   CR ;¿ (0), a contradiction.  Thus, we have shown that conditions (a)

and (b) imply that  A is integrally closed.

We now show that  A  is a regular ring.  Let  q be a minimal prime of  A.

Then  A     is a discrete rank one valuation ring.  In particular, A     is a regular

local ring.   Assume we have shown that A     is a regular local ring for all

primes  q of height less than or equal to  /.  Let  q be a prime of height t + 1.

Then by (a) q is not differential under Der, (A).  Then qA    is not differential

under Der,(A ).  We note that the induction hypothesis implies that every

proper localization of A    is regular.  It now follows from [7, Theorem 5] that

A     is regular.  This completes the proof of Theorem 3.

It follows from [2, 16.12.12] that if A  is regular, then A  is a smooth

algebra over  ¿.   Thus Theorem 3 can be viewed as a partial converse of Theorem 2.

Example.   In studying the proofs of Theorems 1 and 3, we see that the

following theorem proven by A. Seidenberg   [6] is of crucial importance.

Theorem 4.   Let  R  be an integral domain containing the rational numbers

k, and let  R    be the ring of elements in the quotient field of R which are

quasi-integral over R.   Let  8 £ DerKß).   Then 8 eDerKP*).

It is well known that this theorem is false if ¿  is a field of character-

istic not zero.    It is somewhat surprising that this theorem is also false (in

the characteristic zero case) for higher derivations.  We give an example.

Consider the curve x   = y    over the rational numbers ¿.  That is, let

A = ¿LX,  y]/(X   - Y ) = k[x, y].  One easily checks that  A  is an integral

domain whose integral closure A in the quotient field Q of A  is given by

A = A\_x/y\. Since Q is a separable algebraic extension of ¿(y), it follows

that any  <f> £ Der,(Q)  is uniquely determined by its values on  y  and y  .   A

simple calculation shows that if  <f>(y) = a and  <f>(y ) = b, then

¿W=^(^_ÍÍ),     #x2) . iyb _ 3y2fl    and    ^y) = ^^-2y^
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In particular, if we set a = 1  and b = - 2y, then cf> e" Der, (A) and is given

by

(10)  0(y)=i,   <My2) = -2y,    <£(*) = 0,   0(*2) = -9y2   and   $*y) = -5*.

The conductor C of A is given by C = (x, y). Note that </i(C) j£ C. Using

[5, Theorem 15], we see that (f>(x/y) = x/y /A. Thus, higher derivations

on  A need not map A   into  A.

Finally the author notes that in the above example (and all other examples

investigated so far) if </> e Der2(A) satisfies A</> € Der^(A) U DerKA), then

<f>(A) C A. This leads to the following conjecture. Suppose A is a finitely

generated integral domain over a field k of characteristic zero. Let qb £

Der?(A), and suppose A<£ e 2(A). Suppose further that the derivations xf/V,

A; (as in (7)) used in Ac/> map the integral closure A of A into itself.

Then <f> maps A  to A.
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