HIGHER DERIVATIONS ON FINITELY GENERATED INTEGRAL DOMAINS. II

WILLIAM C. BROWN

ABSTRACT. We prove

Theorem. Let $A = k[x_1, \ldots, x_m]$ be a finitely generated integral domain over a field k of characteristic zero. Then A regular, i.e. the local ring A_q is regular for every prime ideal $q \subseteq A$, is equivalent to the following two conditions: (1) no prime of A of height greater than one is differential, and (2) for all $\phi \in \operatorname{Hom}_k(A, A), \phi \in \operatorname{Der}_k^n(A)$ if and only if $\Delta \phi \in \mathbf{\Sigma}_{k=1}^{n-1} \operatorname{Der}_k^i(A) \cup \operatorname{Der}_k^{n-i}(A)$ $(n = 1, 2, \ldots)$.

Here Δ denotes the Hochschild coboundary operator, \cup denotes the cup product, and $\operatorname{Der}_{k}^{n}(R)$ is the module of higher derivations of rank n.

Introduction. Throughout this paper, $A = k[x_1, \ldots, x_m]$ will denote a finitely generated integral domain over a field k of characteristic zero. For each $n = 1, 2, \ldots$, we shall let $\operatorname{Der}_k^n(A)$ denote the A-module of all *n*th order derivations of A to A which vanish on k. Thus, $\phi \in \operatorname{Der}_k^n(A)$ if and only if $\phi \in \operatorname{Hom}_k(A, A)$, and for all $a_0, \ldots, a_n \in A$ we have

(1)

$$\stackrel{\phi(a_{0}a_{1}\cdots a_{n})}{=\sum_{s=1}^{n}(-1)^{s-1}\sum_{i_{1}\cdots i_{s}}a_{i_{1}}\cdots a_{i_{s}}\phi(a_{0}\cdots \check{a}_{i_{1}}\cdots \check{a}_{i_{s}}\cdots a_{n}).$$

The author refers the reader to [5] for the various properties of the modules $\operatorname{Der}_{k}^{n}(A)$ which are used in this paper.

It follows from [5, Proposition 4 and Corollary 6.1] that any composite $\delta_1 \dots \delta_j \ (1 \le j \le n)$ of j-derivations $\delta_i \in \operatorname{Der}_k^1(A)$ is an *n*th order derivation. The A-submodule of $\operatorname{Der}_k^n(A)$ spanned by all such composites will be denoted by $\operatorname{der}_k^n(A)$.

We shall say that a prime ideal p in A is differential if $\delta(p) \subseteq p$ for all $\delta \in \text{Der}_{k}^{1}(A)$. We shall call A a regular ring if for all prime ideals $q \subseteq A$,

Copyright © 1975, American Mathematical Society

Received by the editors February 28, 1974.

AMS (MOS) subject classifications (1970). Primary 13H05.

Key words and phrases. nth order derivation, $der_{k}^{n}(A)$.

the local ring A_a is regular. With these definitions, the author proved [1]

Theorem 1. Let $A = k[x_1, \ldots, x_m]$ be a finitely generated integral domain over a field k of characteristic zero. Then A is a regular ring if and only if the following two properties are satisfied: (a) no prime p of A of height greater than one is differential and (b) $\operatorname{Der}_k^n(A) = \operatorname{der}_k^n(A)$ for all n.

Thus, the arithmetic condition (b) on the modules $\operatorname{Der}_k^n(A)$ in the presence of (a) implies regularity. The purpose of this paper is to show that the condition (b) can be replaced by another quite different arithmetic condition on the modules $\operatorname{Der}_k^n(A)$.

Recall that if ϕ and ψ are k-linear mappings of A into itself, then the Hochschild coboundary $\Delta \phi$ of ϕ is the k-bilinear mapping $\Delta \phi: A \times A \to A$ given by $\Delta \phi(a, b) = \phi(ab) - a\phi(b) - b\phi(a)$ for all $a, b \in A$. The cup product $\phi \cup \psi: A \times A \to A$ is the k-bilinear mapping defined by $\phi \cup \psi(a, b) =$ $\phi(a)\psi(b)$. If P and Q are two A-submodules of $\operatorname{Hom}_k(A, A)$, then $P \cup Q$ will denote the set of all k-bilinear mappings of $A \times A \to A$ which are finite sums of mappings of the form $\phi \cup \psi$ for $\phi \in P, \psi \in Q$.

Let us set

$$\sum (A) = \sum_{i=1}^{n-1} \operatorname{Der}_{k}^{i}(A) \cup \operatorname{Der}_{k}^{n-i}(A).$$

Then it follows from [5, Proposition 3] that $\phi \in \text{Der}_k^n(A)$ if $\Delta \phi \in \Sigma(A)$. In [3], Y. Ishibashi proved

Theorem 2. Let A be a finitely generated algebra over a field k such that $\Omega_k^i(A)$ is A-projective for every $i \ge 1$. Let $\phi \in \operatorname{Hom}_k(A, A)$. Then $\phi \in \operatorname{Der}_k^n(A)$ if and only if $\Delta \phi \in \Sigma(A)$. Here $\Omega_k^i(A)$ denotes the A-module of ith order differentials.

If A is a finitely generated integral domain over a field k of characteristic zero, then we shall prove a partial converse to Theorem 2.

Main results.

Theorem 3. Let $A = k[x_1, \ldots, x_m]$ be a finitely generated integral domain over a field k of characteristic zero. Then A is a regular ring if and only if the following two conditions are satisfied:

(a) no prime ideal p of A of height greater than one is differential; and
(b) for every positive integer n and every φ ∈ Hom_k(A, A) φ ∈
Derⁿ_k(A) if and only if Δφ ∈ Σ(A).

Proof. Suppose A is a regular ring. Then by Theorem 1, A satisfies

(a) and for each positive integer n, $\operatorname{Der}_{k}^{n}(A) = \operatorname{der}_{k}^{n}(A)$. But if every $\phi \in \operatorname{Der}_{k}^{n}(A)$ is a linear combination of composites of first order derivations, then a simple induction argument shows $\Delta \phi \in \Sigma(A)$. Thus, one direction of Theorem 3 follows immediately from Theorem 1.

Now suppose A satisfies conditions (a) and (b). We shall first show that A is integrally closed. Let Q denote the quotient field of A, and let \overline{A} denote the integral closure of A in Q. Let us assume that $A \neq \overline{A}$. Then the conductor C of A is a proper ideal in A. By [6, Corollary, p. 169], C is a differential ideal. Let p be an associated prime of C. Then by [7, Theorem 1], p is differential, and thus by condition (a) p is a minimal prime of A.

Now let $R = A_p$ (A localized at p). Then \overline{R} , the integral closure of Rin Q, is given by \overline{A}_p . The conductor of R in \overline{R} is just CR. We note that \overline{R} is a semilocal ring with maximal ideals say p_1, \ldots, p_s . If we set $V_i = \overline{R}_{p_i}$, $i = 1, \ldots, s$, then V_i is a discrete rank one valuation ring, and $\overline{R} = \bigcap_{i=1}^{s} V_i$. Since $\Omega_k^n(R) = \Omega_k^n(A) \otimes_A A_p$ [5, Theorem 9], and A_p is a flat Amodule, we see that $\operatorname{Der}_k^n(R) = \operatorname{Der}_k^n(A) \otimes_A A_p$. So any derivation ϕ in $\operatorname{Der}_k^n(R)$ has the form $(1/s)\phi'$ with $\phi' \in \operatorname{Der}_k^n(A)$, s an element of A not in p. Thus, since A satisfies (b), one easily sees that if $\phi \in \operatorname{Der}_k^n(R)$, then $\Delta \phi \in \Sigma(R)$. On the other hand, if $\phi \in \operatorname{Hom}_k(R, R)$, and $\Delta \phi \in \Sigma(R)$, then it follows from [5, Proposition 3] that $\phi \in \operatorname{Der}_k^n(R)$. Thus, R satisfies condition (b) in the theorem.

Let the tanscendence degree of Q over k be r, and let $\Omega_k^1(T)$ denote the module of first order differentials of any k-algebra T. It follows from [4, Theorem 3'] that $\Omega_k^1(V_i)$ is a free V_i -module necessarily of rank r. Since \overline{R} is semilocal, it follows that $\operatorname{Der}_k^1(\overline{R})$ is a free \overline{R} -module of rank r. Let $\overline{d}: \overline{R} \to \Omega_k^1(\overline{R})$ denote the canonical derivation of \overline{R} into $\Omega_k^1(\overline{R})$.

Since the depth of p is r-1, the quotient field of A/p has transcendence degree r-1 over k. Hence there exist elements $\alpha_1, \ldots, \alpha_{r-1} \in A - p$ such that the quotient field of A/p is a separable algebraic extension of $k(\overline{\alpha}_1, \ldots, \overline{\alpha}_{r-1})$. Here $\overline{\alpha}_i$ of course denotes the image of α_i in A/p. Note that the field $F = k(\alpha_1, \ldots, \alpha_{r-1})$ is contained in R.

Using [8, Theorem 18, p. 45], we can find an element $\beta \in \bigcap_{i=1}^{s} p_i$ such that β generates the maximal ideal in each local ring V_i , $i = 1, \ldots, s$. It now follows from the proof of [4, Theorem 3'] and Nakayama's lemma that $\{\overline{d}(\beta), \overline{d}(\alpha_1), \ldots, \overline{d}(\alpha_{r-1})\}$ is a free \overline{R} -module basis of $\Omega_k^1(\overline{R})$. Since $\operatorname{Hom}_{\overline{R}}(\Omega_k^1(\overline{R}), \overline{R}) \cong \operatorname{Der}_k^1(\overline{R})$, there exist derivations $\delta_0, \delta_1, \ldots, \delta_{r-1} \in \operatorname{Der}_k^1(\overline{R})$ such that the following equations are satisfied:

2)
$$\delta_0(\beta) = 1, \quad \delta_0(\alpha_i) = 0 = \delta_i(\beta), \quad i = 1, ..., r - 1,$$

and

(

$$\delta_i(\alpha_j) = \begin{cases} 0 & \text{if } i \neq j, i, j = 1, \dots, r-1, \\ 1 & \text{if } i = j. \end{cases}$$

Clearly $\{\delta_0, \ldots, \delta_{r-1}\}$ is a free \overline{R} -module basis of $\operatorname{Der}_k^1(\overline{R})$ and also a Q-algebra basis for $\bigcup_{n=1}^{\infty} \operatorname{Der}_k^n(Q)$.

If $\phi \in \operatorname{Der}_{k}^{n}(R)$, then by [5, Theorem 15] $\phi \in \operatorname{Der}_{k}^{n}(Q)$. Thus, ϕ can be written uniquely as a polynomial (with coefficients in Q) in $\delta_{0}, \ldots, \delta_{r-1}$ of degree less than or equal to n. Let $J = \bigcap_{i=1}^{s} p_{i}$, the Jacobson radical of \overline{R} . We need the following

Lemma. Let $\phi \in \text{Der}_k^n(R)$. Then $\phi = g(\delta_0, \ldots, \delta_{r-1})$, where $g(X_0, \ldots, X_{r-1})$ is a polynomial in indeterminates X_i with coefficients in Q. Furthermore, the coefficient of δ_0^n in g is an element of J^n .

Proof. Only the last statement in the Lemma needs proof. We proceed via induction on *n*. Suppose $\phi \in \operatorname{Der}_k^1(R)$. By [6, Corollary, p. 169], *CR* is differential under ϕ . Since $\phi \in \operatorname{Der}_k^1(\overline{R})$, $C\overline{R}$ is differential under ϕ . Thus, every associated prime of $C\overline{R}$ is differential under ϕ . Since every p_i is an associated prime of $C\overline{R}$, we have $\phi(p_i) \subseteq p_i$, $i = 1, \ldots, s$. Thus, $\phi(\beta) \in J$. But if $\phi = \sum_{i=0}^{r-1} a_i \delta_i$, $a_i \in Q$, then $\phi(\beta) = a_0$. Thus the Lemma is proven in the case n = 1.

We shall sketch the proof of the n = 2 case before proceeding to the inductive step. Suppose $\phi \in \operatorname{Der}_k^2(R)$. Since R satisfies condition (b), there exist λ_l , $\psi_l \in \operatorname{Der}_k^1(R)$, and elements $e_l \in R$ such that for all a and b in R we have

(3)
$$\phi(ab) = a\phi(b) + b\phi(a) + \sum_{l} e_{l}\psi_{l}(a)\lambda_{l}(b).$$

One easily checks using [5, Theorem 15] that (3) holds for all $a, b \in Q$. Now write

(4)
$$\phi = \sum_{i=0}^{r-1} a_i \delta_i + \sum_{i_1, i_2=0}^{r-1} a_{i_1 i_2} \delta_{i_1} \delta_{i_2} \quad \text{with} \ a_i, \ a_{i_1 i_2} \in Q$$

and

(5)
$$\psi_l = \sum_{i=0}^{r-1} \mu_{il} \delta_i, \quad \lambda_l = \sum_{i=0}^{r-1} \gamma_{il} \delta_i \quad \text{with } \mu_{il}, \gamma_{il} \in Q.$$

From the case n = 1, we have μ_{0l} , $\gamma_{0l} \in J$. Now substitute (4) and (5) into (3) and obtain

(6) $\sum_{i_{1},i_{2}}^{a} a_{i_{1}i_{2}}(\delta_{i_{1}}(a)\delta_{i_{2}}(b) + \delta_{i_{1}}(b)\delta_{i_{2}}(a)) \\= \sum_{l}^{c} e_{l} \left(\sum_{i=0}^{r-1} \mu_{il}\delta_{i}(a)\right) \left(\sum_{i=0}^{r-1} \gamma_{il}\delta_{i}(b)\right).$

If we now substitute $a = b = \beta$ in (6), we get $2a_{00} = \sum_l e_l \mu_{0l} \gamma_{01} \in J^2$. Thus $a_{00} \in J^2$ and the case n = 2 is complete.

Assume we have now proven the Lemma for t = 1, 2, ..., n - 1 $(n \ge 3)$, and consider $\phi \in \operatorname{Der}_{k}^{n}(R)$. Then by condition (b) there exist elements $e_{l,j} \in R$ and derivations $\psi_{l}^{(j)}, \lambda_{l}^{(j)} \in \operatorname{Der}_{k}^{j}(R), j = 1, ..., n - 1$, such that for all $a, b \in R$ we have

(7)

$$\phi(ab) = a\phi(b) + b\phi(a) + \sum e_{l1}\psi_l^{(1)}(a)\lambda_l^{(n-1)}(b) + \sum_l e_{l2}\psi_l^{(2)}(a)\lambda_l^{(n-2)}(b) + \dots + \sum_l e_{ln-1}\psi_l^{(n-1)}(a)\lambda_l^{(1)}(b)$$

Now write ϕ as a polynomial $g(\delta_0, \ldots, \delta_{r-1})$ of degree less than or equal to *n*. If the coefficient of δ_0^n in *g* is zero, then we have nothing to prove. Thus, without loss of generality, we can assume that the coefficient of δ_0^n in *g* is not zero. By the induction hypothesis, we can write each $\psi_l^{(j)}$ and $\lambda_l^{(j)}$ as a polynomial in $\delta_0, \delta_1, \ldots, \delta_{r-1}$ whose coefficient of δ_0^j is in J^j . Say

(8)
$$\psi_{l}^{(j)} = \sum c_{t}^{l,j} \delta_{t} + \sum c_{t_{1}t_{2}}^{l,j} \delta_{t_{1}} \delta_{t_{2}} + \dots + \sum c_{t_{1}\cdots t_{j}}^{l,j} \delta_{t_{1}} \cdots \delta_{t_{j}}$$

and

$$\lambda_l^{(j)} = \sum b_t^{l,j} \delta_t + \sum b_{t_1 t_2}^{l,j} \delta_{t_1} \delta_{t_2} + \dots + \sum b_{t_1 \dots t_j}^{l,j} \delta_{t_1} \dots \delta_{t_j}$$

We now substitute $\phi = g(\delta_0, \ldots, \delta_{r-1})$ and the expressions in (8) into (7). Using the relations in (2), we can eliminate all terms in (7) which involve any δ_i , $i = 1, \ldots, r-1$. Thus, (7) reduces to an equation of the form

$$\sum_{i=1}^{n} a_{i} \delta_{0}^{i}(ab) = a \left(\sum_{i=1}^{n} a_{i} \delta_{0}^{i}(b) \right) + b \left(\sum_{i=1}^{n} a_{i} \delta_{0}^{i}(a) \right)$$

$$(9) \qquad + \sum_{l} e_{l1}(c_{0}^{l,1} \delta_{0}(a))(b_{0}^{l,n-1} \delta_{0} + \dots + b_{0}^{l,n-1} \delta_{0}^{n-1})(b)$$

$$+ \dots + \sum_{l} e_{l,n-1}(c_{0}^{l,n-1} \delta_{0} + \dots + c_{0}^{l,n-1} \delta_{0}^{n-1})(a)(b_{0}^{l,1} \delta_{0}(b)).$$

Here $c_{0...0}^{l,j}$, $b_{0...0}^{l,j} \in J^j$ for each j = 1, ..., n-1, when the number of zeros appearing in the subscript is j.

If we now make various substitutions of the form $a = \beta^s$, $b = \beta^t$ and eliminate sums which are equal, we easily see that $a_n \in J^n$. Since a_n is the coefficient of δ_0^n appearing in g, the proof is complete.

Using the Lemma, we can easily argue that A is integrally closed. Let $c \in CR$. Then $c\delta_0^n \in \operatorname{Der}_k^n(R)$ for every n. Thus by the Lemma, $c \in J^n$. Since c is arbitrary, we have $CR \subset \bigcap_{n=1}^{\infty} J^n$. Since J is the Jacobson radical of \overline{R} , we have $\bigcap_{n=1}^{\infty} J^n = 0$. Thus CR = (0). But we are assuming $A \neq \overline{A}$, and thus $CR \neq (0)$, a contradiction. Thus, we have shown that conditions (a) and (b) imply that A is integrally closed.

We now show that A is a regular ring. Let q be a minimal prime of A. Then A_q is a discrete rank one valuation ring. In particular, A_q is a regular local ring. Assume we have shown that A_q is a regular local ring for all primes q of height less than or equal to t. Let q be a prime of height t + 1. Then by (a) q is not differential under $\text{Der}_k^1(A)$. Then qA_q is not differential under $\text{Der}_k^1(A_q)$. We note that the induction hypothesis implies that every proper localization of A_q is regular. It now follows from [7, Theorem 5] that A_q is regular. This completes the proof of Theorem 3.

It follows from [2, 16.12.12] that if A is regular, then A is a smooth algebra over k. Thus Theorem 3 can be viewed as a partial converse of Theorem 2.

Example. In studying the proofs of Theorems 1 and 3, we see that the following theorem proven by A. Seidenberg [6] is of crucial importance.

Theorem 4. Let R be an integral domain containing the rational numbers k, and let R' be the ring of elements in the quotient field of R which are quasi-integral over R. Let $\delta \in \operatorname{Der}_{k}^{1}(R)$. Then $\delta \in \operatorname{Der}_{k}^{1}(R')$.

It is well known that this theorem is false if k is a field of characteristic not zero. It is somewhat surprising that this theorem is also false (in the characteristic zero case) for higher derivations. We give an example.

Consider the curve $x^2 = y^3$ over the rational numbers k. That is, let $A = k[X, Y]/(X^2 - Y^3) = k[x, y]$. One easily checks that A is an integral domain whose integral closure \overline{A} in the quotient field Q of A is given by $\overline{A} = A[x/y]$. Since Q is a separable algebraic extension of k(y), it follows that any $\phi \in \text{Der}_k^2(Q)$ is uniquely determined by its values on y and y^2 . A simple calculation shows that if $\phi(y) = a$ and $\phi(y^2) = b$, then

$$\phi(x) = \frac{3y}{8}\left(\frac{2ya+b}{x}\right), \quad \phi(x^2) = 3yb - 3y^2a \text{ and } \phi(xy) = \frac{5y^2}{8}\left(\frac{3b-2ya}{x}\right).$$

In particular, if we set a = 1 and b = -2y, then $\phi \in \operatorname{Der}_{k}^{2}(A)$ and is given by

(10)
$$\phi(y) = 1$$
, $\phi(y^2) = -2y$, $\phi(x) = 0$, $\phi(x^2) = -9y^2$ and $\phi(xy) = -5x$.

The conductor C of A is given by C = (x, y). Note that $\phi(C) \notin C$. Using [5, Theorem 15], we see that $\phi(x/y) = x/y^2 \notin \overline{A}$. Thus, higher derivations on A need not map \overline{A} into \overline{A} .

Finally the author notes that in the above example (and all other examples investigated so far) if $\phi \in \operatorname{Der}_k^2(A)$ satisfies $\Delta \phi \in \operatorname{Der}_k^1(A) \cup \operatorname{Der}_k^1(A)$, then $\phi(\overline{A}) \subset \overline{A}$. This leads to the following conjecture. Suppose A is a finitely generated integral domain over a field k of characteristic zero. Let $\phi \in \operatorname{Der}_k^n(A)$, and suppose $\Delta \phi \in \Sigma(A)$. Suppose further that the derivations $\psi_l^{(i)}$, $\lambda_l^{(i)}$ (as in (7)) used in $\Delta \phi$ map the integral closure \overline{A} of A into itself. Then ϕ maps \overline{A} to \overline{A} .

REFERENCES

1. W. C. Brown, Higher derivations on finitely generated integral domains, Proc. Amer. Math. Soc. 42 (1974), 23-27.

2. A. Grothendieck, Éléments de géométrie algébrique. IV, Étude locale des schémas et des morphismes de schémas. IV, Inst. Hautes Études Sci. Publ. Math. No. 32, (1967). MR 39 # 220.

3. Y. Ishibashi, Some remarks on high order derivations, Pacific J. Math. 52 (1974), 419-424.

4. Y. Nakai, On the theory of differentials in commutative rings, J. Math. Soc. Japan 13 (1961), 63-84. MR 23 #A2437.

5. ____, Higher order derivations. I, Osaka J. Math. 7 (1970), 1-27. MR 41 #8404.

6. A. Seidenberg, Derivations and integral closure, Pacific J. Math. 16 (1966), 167-173. MR 32 # 5686.

7. ____, Differential ideals in rings of finitely generated type, Amer. J. Math. 89 (1967), 22-42. MR 35 # 2902.

8. O. Zariski and P. Samuel, *Commutative algebra*. Vol. II, University Series in Highter Math., Van Nostrand, Princeton, N. J., 1960. MR 22 # 11006.

DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY, EAST LANSING, MICHIGAN 48824