APPLICATIONS OF GRAPH THEORY TO MATRIX THEORY

FRANK W. OWENS

ABSTRACT. Let A_1, \ldots, A_k be $n \times n$ matrices over a commutative ring R with identity. Graph theoretic methods are established to compute the standard polynomial $[A_1, \ldots, A_k]$. It is proved that if $k < 2n - 2$, and if the characteristic of R either is zero or does not divide $4l(n/2) - 2$, where l denotes the greatest integer function, then there exist $n \times n$ skew-symmetric matrices A_1, \ldots, A_k such that $[A_1, \ldots, A_k] \neq 0$.

1. Introduction. Let A_1, \ldots, A_k be $n \times n$ matrices over a commutative ring R with identity. Let S_k be the symmetric group of degree k. Define the standard polynomial $[A_1, \ldots, A_k]$ by

$$[A_1, \ldots, A_k] = \sum \text{sgn} \sigma A_{\sigma(1)} \cdots A_{\sigma(k)},$$

where the summation is over all permutations $\sigma \in S_k$.

Amitsur and Levitzki proved algebraically [1] that $[A_1, \ldots, A_k] = 0$ if $k \geq 2n$. Their proof is elementary but lengthy. Swan gave a simpler and shorter graph theoretic proof of their theorem [8], [9]. Amitsur and Levitzki also proved that if $k < 2n$, then there exist $n \times n$ matrices A_1, \ldots, A_k such that $[A_1, \ldots, A_k] \neq 0$, i.e., their theorem is sharp. See [1], [7] and [8] for examples. It is known [7] that if $k < 2n$, then there exist $n \times n$ symmetric matrices A_1, \ldots, A_k such that $[A_1, \ldots, A_k] \neq 0$.

Kostant proved in [3] that $[A_1, \ldots, A_k] = 0$ if $k \geq 2n - 2$, where n is even, and each of the matrices A_j is complex skew-symmetric. In this paper we prove using graph theoretic methods that if $k < 2n - 2$, and if the characteristic of R either equals 0 or does not divide $4l(n/2) - 2$, where l denotes the greatest integer function, then there exist $n \times n$ skew-symmetric matrices A_1, \ldots, A_k such that $[A_1, \ldots, A_k] \neq 0$. This solves Conjecture 2 in [7] in the affirmative. In particular, for n even this implies that Kostant's theorem is sharp. Kostant's proof is nonelementary and uses cohomology theory. In [4] we present a graph theoretic proof that $[A_1, \ldots, A_k] = 0$ for $k \geq 2n - 2$.

Presented to the Society, January 28, 1973 under the title Graph theory and identities on matrices; received by the editors August 29, 1973 and, in revised form, May 28, 1974.

AMS (MOS) subject classifications (1970). Primary 05B20, 05C20, 16A28, 16A38; Secondary 15A24.

Key words and phrases. Standard polynomial, digraph, Euler path, skew-symmetric.
if each of the matrices A_j is skew-symmetric, and R is an integral domain not of characteristic 2. This generalization of Kostant’s theorem solves Conjecture 1 in [7] in the affirmative. The solutions of Conjectures 1 and 2 have been obtained independently by Hutchinson [2] and by Rowen [6]. Our results in this paper are somewhat stronger for the case when the characteristic of R is larger than 2. See [2], [5] and [6] for related results.

2. Algebraic preliminaries. We first state some algebraic properties of $[\ldots, \ldots]$. $[\ldots, \ldots]$ is alternating and multilinear. $[\ldots, \ldots]$ may be defined recursively by $[A] = A$ and

$$
[A_1, \ldots, A_k] = \sum_{j=1}^{k} (-1)^{j-1} [A_1, \ldots, \hat{A}_j, \ldots, A_k]\]
$$

$$
= \sum_{j=1}^{k} (-1)^{k-j} [A_1, \ldots, \hat{A}_j, \ldots, A_k]A_j \quad \text{for } k > 1,
$$

where the notation \hat{A}_j means that the matrix A_j is absent.

The following propositions are easily established using the alternating and multilinear properties of $[\ldots, \ldots]$. Let A' denote the transpose of the matrix A.

Proposition 1. If A_1, \ldots, A_k are $n \times n$ matrices, then

(a) $[A_1, \ldots, A_k]' = [A_1', \ldots, A_k']$.

(b) $[A_1, \ldots, A_k] = (-1)^{k(k-1)/2} [A_1', \ldots, A_k]$.

(c) $[A_1, \ldots, A_k]' = (-1)^{k(k-1)/2} [A_1', \ldots, A_k']$.

Proposition 2. If each A_j is an $n \times n$ skew-symmetric matrix, then

(a) $[A_1, \ldots, A_k]' = (-1)^{k(k+1)/2} [A_1, \ldots, A_k]$.

(b) $[A_1, \ldots, A_k]$ is symmetric iff $k \equiv 0$ or 3 (mod 4) and is skew-symmetric iff $k \equiv 1$ or 2 (mod 4).

Proposition 3. If each A_j is an $n \times n$ symmetric matrix, then

(a) $[A_1, \ldots, A_k]' = (-1)^{k(k-1)/2} [A_1, \ldots, A_k]$.

(b) $[A_1, \ldots, A_k]$ is symmetric iff $k \equiv 0$ or 1 (mod 4) and is skew-symmetric iff $k \equiv 2$ or 3 (mod 4).

Let e_{ij} be the elementary matrix unit which has a 1 in the (i, j)th position and zeros elsewhere. Let s_{ij}, $1 \leq i < j \leq n$, denote the $n \times n$ skew-symmetric matrix unit $e_{ij} - e_{ji}$. Let t_{ij}, $1 \leq i \leq j \leq n$, denote the $n \times n$ symmetric matrix unit $e_{ij} + (1 - \delta_{ij})e_{ji}$, where δ_{ij} is the Kronecker delta. Then
\begin{align}
(2.1) \quad e_{ij}e_{il} &= \delta_{ij}e_{il} \\
{s_{ij}^s h' &= (e_{ij} - e_{ii})(e_{il} - e_{il}) = e_{ij}e_{il} - e_{ij}e_{ib} - e_{ij}e_{hl} + e_{ij}e_{lh} \\
&= \delta_{ij}e_{il} - \delta_{ij}e_{ib} - \delta_{ih}e_{jl} + \delta_{il}e_{jh}.
\end{align}

\begin{align}
(2.2) \quad t_{ij}e_{il} &= (e_{ij} + (1 - \delta_{ij})e_{il})(e_{il} + (1 - \delta_{il})e_{hl}) \\
&= e_{ij}e_{il} + (1 - \delta_{il})e_{ij}e_{hl} + (1 - \delta_{ij})e_{il}e_{hl} + (1 - \delta_{ij})(1 - \delta_{il})e_{ij}e_{hl} \\
&= \delta_{ij}e_{il} + (1 - \delta_{il})\delta_{ij}e_{hl} + (1 - \delta_{ij})\delta_{ih}e_{jl} + (1 - \delta_{ij})(1 - \delta_{ih})\delta_{il}e_{jh}
\end{align}

\begin{align}
(2.3) \quad \begin{cases}
0 & \text{if } j < b, \\
\delta_{il}e_{il} & \text{if } j = b, \\
\delta_{ih}e_{il} & \text{if } b < j < l, \\
\delta_{ij}e_{il} + (1 - \delta_{ih})e_{ib} + (1 - \delta_{ij})\delta_{ih}e_{jl} & \text{if } j = l, \\
\delta_{ij}e_{il} + (1 - \delta_{ih})\delta_{il}e_{jh} & \text{if } j > l.
\end{cases}
\end{align}

3. Graph theoretic preliminaries. Let G be a graph having n vertices v_1, \ldots, v_n and k edges e_1, \ldots, e_k. If v_i and v_j are vertices of G, then an Euler path in G from v_i to v_j is a permutation $\omega \in S_k$ for which there exists an orientation of G such that

(a) e_{ω_1} starts at v_i, i.e., v_i is the initial vertex of e_{ω_1},
(b) e_{ω_k} ends at v_j, i.e., v_j is the terminal vertex of e_{ω_k}, and
(c) the terminal vertex of e_{ω_h} is the initial vertex of $e_{\omega(h+1)}$ for $1 \leq h < k$.

If, in addition, G is a digraph, then a unicursal path \cite{8} in G from v_i to v_j is an Euler path in G from v_i to v_j with respect to the given orientation of G. Thus if G is a digraph, every unicursal path in G from v_i to v_j is also an Euler path in G from v_i to v_j but not conversely, i.e. we deal only with the given directions of the edges when considering unicursal paths.

If G is a digraph without loops and ω is an Euler path in G from v_i to v_j, then some of the edges of G may have directions induced by ω opposite to their given directions. We refer to the number of such edges by $r(\omega)$. Thus
the number of edges of G which have directions induced by ω which are the same as their given directions is $k - \tau(\omega)$.

Let each A_j be some e_{hl}. Define a digraph G as follows. G has n vertices v_1, \ldots, v_n, and G has a directed edge e_j from v_h to v_l for each $A_j = e_{hl}$. The following theorem is due to Swan [8] and is immediate from multiplication rule (2.1).

Theorem 1. The (i, j)th entry in $[A_1, \ldots, A_k]$ is $\Sigma \text{sgn}(\omega)$, where the summation is over all unicursal paths ω in G from v_i to v_j.

Let each A_j be some s_{hl}. Define a digraph G as follows. G has n vertices v_1, \ldots, v_n, and G has a directed edge e_j from v_h to v_l for each $A_j = s_{hl}$. The next theorem follows immediately from Theorem 1 and multiplication rule (2.2).

Theorem 2. The (i, j)th entry in $[A_1, \ldots, A_k]$ is $\Sigma (-1)^{\tau(\omega)} \text{sgn}(\omega)$, where the summation is over all Euler paths ω in G from v_i to v_j.

Let each A_j be some t_{hl}. Define a graph G as follows. G has n vertices v_1, \ldots, v_n, and G has an edge e_j from v_h to v_l for each $A_j = t_{hl}$. The next theorem follows immediately from Theorem 1 and multiplication rule (2.3).

Theorem 3. The (i, j)th entry in $[A_1, \ldots, A_k]$ is $\Sigma \text{sgn}(\omega)$, where the summation is over all Euler paths ω in G from v_i to v_j.

It is easy to give a similar graph theoretic interpretation to $[A_1, \ldots, A_k]$ when the A_j's are a mixture of elementary, skew-symmetric and symmetric matrix units.

4. Main result. This section establishes

Theorem 4. If $k < 2n - 2$, and if the characteristic of R either equals 0 or does not divide $4l(\lfloor n/2 \rfloor) - 2$, where 1 denotes the greatest integer function, then there exist $n \times n$ skew-symmetric matrices A_1, \ldots, A_k such that $[A_1, \ldots, A_k] \neq 0$.

By the recursion formula for $[A_1, \ldots, A_k]$ in §2 it is sufficient to prove Theorem 4 for the case $k = 2n - 3$, $n > 1$. For this case let the matrices A_1, \ldots, A_k be $s_{12}, s_{23}, s_{13}, s_{34}, s_{24}, \ldots, s_{n-1,n}, s_{n-2,n}$, and let $B_n = [A_1, \ldots, A_k]$. By direct computation $B_2 = s_{12}$ and $B_3 = -2(e_{11} + e_{22} + e_{33})$. Hence, Theorem 4 is true for $n = 2$ or 3. Figure 1 illustrates a portion of the digraph G_n described preceding Theorem 2 associated with B_n.
Lemma 1. If \(n > 3 \), then there exists an integer \(c_n \) such that \(B_n = c_n(e_{2,n-1} + (-1)^{n-1}e_{n-1,2}) \), i.e., \(B_n = c_n s_{2,n-1} \) for \(n \) even > 3, and \(B_n = c_n t_{2,n-1} \) for \(n \) odd > 3.

Proof. Proposition 2 implies that \(B_n \) is skew-symmetric iff \(n \) is even and is symmetric iff \(n \) is odd. \(v_2 \) and \(v_{n-1} \) are the only vertices of \(G_n \) of odd order since \(n > 3 \). Hence, the only possible Euler paths \(\omega \) in \(G_n \) are from \(v_2 \) to \(v_{n-1} \) or from \(v_{n-1} \) to \(v_2 \). Apply Theorem 2.

The first few computed \(c_n \)'s are \(c_4 = c_5 = -6 \), \(c_6 = c_7 = -10 \) and \(c_8 = -14 \). For later convenience we set \(c_2 = c_3 = -2 \).

This paragraph is not necessary for the proof of the theorem but may be of interest. If \(E_n \) denotes the number of Euler paths \(\omega \) in \(G_n \) from \(v_2 \) to \(v_{n-1} \), then \(E_2 = 1 \), \(E_3 = 2 \), \(E_4 = 6 \), \(E_5 = 16 \), \(E_6 = 44 \), \(E_7 = 120 \) and \(E_8 = 328 \). We set \(E_1 = 0 \). Then the number of such Euler paths

(a) with \(\omega_1 = 1 \) is \(E_{n-1} \) for \(n > 1 \),
(b) with \(\omega_1 = 2 \) is \(E_{n-1} \) for \(n > 1 \), and
(c) with \(\omega_1 = 5 \) is \(2E_{n-2} \) for \(n > 2 \).

(a), (b) and (c) imply that the \(E_n \)'s satisfy the difference equation \(E_n = 2E_{n-1} + 2E_{n-2} \) for \(n > 2 \) with the initial conditions \(E_1 = 0 \) and \(E_2 = 1 \) whose solution is

\[
E_n = (\sqrt{3}/6)((1 + \sqrt{3})^{n-1} - (1 - \sqrt{3})^{n-1}).
\]

Lemma 2. Let \(P_n \) denote the set of all Euler paths in \(G_n \) from \(v_2 \) to \(v_{n-1} \). Then \(\Sigma (-1)^{r(\omega)} \text{sgn}(\omega) \) equals

(a) \(c_{n-1} \) for \(n > 3 \), where the summation is over all \(\omega \in P_n \) such that \(\omega_1 = 1 \),
(b) \(c_{n-2} - c_{n-3} \) for \(n > 4 \), where the summation is over all \(\omega \in P_n \) such that \(\omega_1 = 2 \),
(c) 0 for \(n > 4 \), where the summation is over all \(\omega \in P_n \) such that \(\omega_1 = 5 \).
Proof of (a). \(\omega_2 = 3 \) for each \(\omega \in P_n \) such that \(\omega_1 = 1 \). Define \(f_j \) by
\[
f_j(x) = x + j \text{ and } f: \{2, 4, 5, \ldots, 2n - 3\} \rightarrow \{1, 2, 3, \ldots, 2n - 5\} \text{ by } f(2) = 1 \text{ and } f(x) = x - 2 \text{ for } 4 \leq x \leq 2n - 3.
\]
Define \(F: \{\omega \in P_n | \omega_1 = 1\} \rightarrow P_{n-1} \) by \(\omega' = F(\omega) = f \circ \omega \circ f_2 \). \(F \) is a 1-1 correspondence such that \(r(\omega) = r(\omega') + 1 \) and \(\text{sgn}(\omega) = -\text{sgn}(\omega') \) for each \(\omega \in P_n \) such that \(\omega_1 = 1 \). Therefore, \(c_n-1 = \sum (-1)^{r(\omega')} \text{sgn}(\omega') \), where the summation is over all \(\omega' \in P_{n-1} \).

Proof of (b). By direct computation \(\sum (-1)^{r(\omega')} \text{sgn}(\omega) = 0 = c_3 - c_2 \)
where the summation is over all \(\omega \in P_5 \) such that \(\omega_1 = 2 \). Hence, we may assume that \(n > 5 \). \(\omega_2 = 3, 4 \) or \(7 \) for each \(\omega \in P_n \) such that \(\omega_1 = 2 \). \(\omega_3 = 1 \) and \(\omega_4 = 5 \) for each \(\omega \in P_n \) such that \(\omega_1 = 2 \) and \(\omega_2 = 3 \). Define \(f: \{4, 6, 7, \ldots, 2n - 3\} \rightarrow \{1, 2, 3, \ldots, 2n - 7\} \) by \(f(4) = 1 \) and \(f(x) = x - 4 \) for \(6 \leq x \leq 2n - 3 \). Define \(F: \{\omega \in P_n | \omega_2 = 3\} \rightarrow P_{n-2} \) by \(\omega' = F(\omega) = f \circ \omega \circ f_4 \). \(F \) is a 1-1 correspondence such that \(r(\omega) = r(\omega') + 1 \) and \(\text{sgn}(\omega) = -\text{sgn}(\omega') \) for each \(\omega \in P_n \) such that \(\omega_1 = 2 \) and \(\omega_2 = 3 \). Therefore, \(c_{n-2} = \sum (-1)^{r(\omega')} \text{sgn}(\omega') \), where the summation is over all \(\omega' \in P_{n-2} \).

\(\omega_3 = 5, 6 \) or \(9 \) for each \(\omega \in P_n \) such that \(\omega_1 = 2 \) and \(\omega_2 = 4 \). \(\omega_4 = 1 \), \(\omega_5 = 3 \) and \(\omega_6 = 7 \) for each \(\omega \in P_n \) such that \(\omega_1 = 2, \omega_2 = 4 \) and \(\omega_3 = 5 \). Define \(f: \{6, 8, 9, \ldots, 2n - 3\} \rightarrow \{1, 2, 3, \ldots, 2n - 9\} \) by \(f(6) = 1 \) and \(f(x) = x - 6 \) for \(8 \leq x \leq 2n - 3 \). Define \(F: \{\omega \in P_n | \omega_2 = 4\} \rightarrow P_{n-3} \) by \(\omega' = F(\omega) = f \circ \omega \circ f_6 \). \(F \) is a 1-1 correspondence such that \(r(\omega) = r(\omega') + 2 \) and \(\text{sgn}(\omega) = \text{sgn}(\omega') \) for each \(\omega \in P_n \) such that \(\omega_1 = 2, \omega_2 = 4 \), and \(\omega_3 = 5 \). Therefore, \(c_{n-3} = \sum (-1)^{r(\omega')} \text{sgn}(\omega') \), where the summation is over all \(\omega' \in P_{n-3} \).

If \(\omega_1 = 2, \omega_2 = 4 \) and \(\omega_3 = 6 \), then \(v_5 \) and \(v_6 \) are connected by two subpaths of \(\omega \), namely \(e_8 \) and the subpath consisting of the edges \(e_7, e_3, e_1, e_5 \) and \(e_9 \). Either exactly two or exactly three of these six edges have orientations induced by \(\omega \) opposite to their given orientations. We may place the set of all \(\omega \in P_n \) such that \(\omega_1 = 2, \omega_2 = 4 \) and \(\omega_3 = 6 \) into 1-1 correspondence with itself by interchanging the order of these two subpaths if exactly 2 of the 6 edges have orientations induced by \(\omega \) opposite to their given orientations. We may place the set of all \(\omega \in P_n \) such that \(\omega_1 = 2, \omega_2 = 4 \) and \(\omega_3 = 6 \) into 1-1 correspondence with itself by interchanging the order of these two subpaths and reversing their induced orientations if exactly 3 of the 6 edges have orientations induced by \(\omega \) opposite to their given orientations. If \(\omega \leftrightarrow \omega' \) denotes this correspondence, then \(r(\omega) = r(\omega') \) and \(\text{sgn}(\omega) = -\text{sgn}(\omega') \). Therefore, \(\sum (-1)^{r(\omega')} \text{sgn}(\omega) = -\sum (-1)^{r(\omega')} \text{sgn}(\omega) \), and so \(\sum (-1)^{r(\omega')} \text{sgn}(\omega) = 0 \).
where each summation is over all \(\omega \in P_n \) such that \(\omega_1 = 2 \), \(\omega_2 = 4 \) and \(\omega_3 = 9 \).

We may place the set of all \(\omega \in P_n \) such that \(\omega_1 = 2 \), \(\omega_2 = 4 \) and \(\omega_3 = 9 \) into 1-1 correspondence with itself by reversing the induced orientation of the cycle consisting of the edges \(e_1, e_3, e_1, e_5 \) and \(e_6 \) for each \(\omega \in P_n \) such that \(\omega_1 = 2 \), \(\omega_2 = 4 \) and \(\omega_3 = 9 \). If \(\omega \leftrightarrow \omega' \) denotes this correspondence, then \(r(\omega) = r(\omega') + 1 \pmod{2} \) and \(\text{sgn}(\omega) = \text{sgn}(\omega') \). Therefore, \(\Sigma(-1)^{r(\omega)} \text{sgn}(\omega) = -\Sigma(-1)^{r(\omega')} \text{sgn}(\omega) \), and so \(\Sigma(-1)^{r(\omega')} \text{sgn}(\omega) = 0 \), where each summation is over all \(\omega \in P_n \) such that \(\omega_1 = 2 \), \(\omega_2 = 4 \) and \(\omega_3 = 9 \).

If \(\omega_1 = 2 \) and \(\omega_2 = 7 \), then there exists \(i, 4 \leq i \leq 2n - 7 \), such that

\[
\omega(i + j) \in \{1, 3, 4, 5\} \quad \text{for} \quad 0 \leq j \leq 3.
\]

Define \(f: \{6, 8, 9, \ldots, 2n - 3\} \rightarrow \{1, 2, 3, \ldots, 2n - 9\} \) by \(f(6) = 1 \) and \(f(x) = x - 6 \) for \(8 \leq x \leq 2n - 3 \). Define \(\omega' = F(\omega) \) by \(\omega'(h) = f \circ \omega(h + 2) \) for \(1 \leq h < i - 2 \) and \(\omega'(h) = f \circ \omega(h + 6) \) for \(i - 2 \leq h \leq 2n - 9 \). Define \(F: \{\omega \in P_n | \omega_1 = 2 \} \rightarrow P_{n-3} \) is a 2-1 map such that \(r(\omega) = r(\omega') + 2 \) and \(\text{sgn}(\omega) = \text{sgn}(\omega') \) for each \(\omega \in P_n \) such that \(\omega_1 = 2 \) and \(\omega_2 = 7 \). Therefore, \(-2c_{n-3} = -2\Sigma(-1)^{r(\omega')} \text{sgn}(\omega') \), where the summation is over all \(\omega' \in P_{n-3} \), \(\Sigma(-1)^{r(\omega')} \text{sgn}(\omega') \), where the summation is over all \(\omega' \in P_n \) such that \(\omega_1 = 2 \) and \(\omega_2 = 7 \).

Proof of (e). By direct computation \(\Sigma(-1)^{r(\omega')} \text{sgn}(\omega') = 0 \), where the summation is over all \(\omega \in P_n \) such that \(\omega_1 = 5 \). Hence, we may assume that

\[
n > 5, \quad \omega_2 = 4, 6 \text{ or } 9 \quad \text{for each} \quad \omega \in P_n \quad \text{such that} \quad \omega_1 = 5, \quad \omega_6 = 7 \quad \text{for each} \quad \omega \in P_n \quad \text{such that} \quad \omega_1 = 5 \quad \text{and} \quad \omega_2 = 4.
\]

Define \(f: \{6, 8, 9, \ldots, 2n - 3\} \rightarrow \{1, 2, 3, \ldots, 2n - 9\} \) by \(f(6) = 1 \) and \(f(x) = x - 6 \) for \(8 \leq x \leq 2n - 3 \). Define \(F: \{\omega \in P_n | \omega_1 = 5 \} \rightarrow P_{n-3} \) by \(\omega' = F(\omega) = f \circ \omega \circ f \) and \(F \) is a 2-1 map such that \(r(\omega) = r(\omega') + 2 \) and \(\text{sgn}(\omega) = \text{sgn}(\omega') \) if \(\omega_3 = 3 \), \(\omega_4 = 1 \) and \(\omega_5 = 2 \), and \(r(\omega) = r(\omega') + 3 \) and \(\text{sgn}(\omega) = -\text{sgn}(\omega') \) if \(\omega_3 = 2 \), \(\omega_4 = 1 \) and \(\omega_5 = 3 \) for each \(\omega \in P_n \) such that \(\omega_1 = 5 \) and \(\omega_2 = 4 \). Therefore, \(2c_{n-3} = 2\Sigma(-1)^{r(\omega')} \text{sgn}(\omega') \), where the summation is over all \(\omega' \in P_{n-3} \), \(\Sigma(-1)^{r(\omega')} \text{sgn}(\omega') \), where the summation is over all \(\omega \in P_n \) such that \(\omega_1 = 5 \) and \(\omega_2 = 4 \).

If \(\omega_1 = 5 \) and \(\omega_2 = 6 \), then there exists \(i, 4 \leq i \leq 2n - 7 \), such that

\[
\omega(i + j) \in \{1, 2, 3, 4\} \quad \text{for} \quad 0 \leq j \leq 3.
\]

Define \(f: \{7, 8, 9, \ldots, 2n - 3\} \rightarrow \{1, 2, 3, \ldots, 2n - 9\} \) by \(f(x) = x - 6 \). Define \(\omega' = F(\omega) \) by \(\omega'(h) = f \circ \omega(h + 2) \) for \(1 \leq h < i - 2 \) and \(\omega'(h) = f \circ \omega(h + 6) \) for \(i - 2 \leq h \leq 2n - 9 \). Define \(F: \{\omega \in P_n | \omega_1 = 5 \} \rightarrow P_{n-3} \) is a 2-1 map. If \(\omega_1 = 2 \), then \(r(\omega) = r(\omega') + 2 \) and \(\text{sgn}(\omega) = -\text{sgn}(\omega') \). If \(\omega_1 = 3 \), then \(r(\omega) = r(\omega') + 1 \) and \(\text{sgn}(\omega) = \text{sgn}(\omega') \). If \(\omega_1 = 4 \) and \(\omega(i + 1) = 2 \), then \(r(\omega) = r(\omega') + 3 \) and \(\text{sgn}(\omega) = \text{sgn}(\omega') \). If \(\omega_1 = 4 \) and \(\omega(i + 1) = 3 \), then \(r(\omega) = r(\omega') + 2 \) and \(\text{sgn}(\omega) = -\text{sgn}(\omega') \).
Thus, \((-1)^{r(\omega)} \text{sgn}(\omega) = -(-1)^{r(\omega')} \text{sgn}(\omega')\) for each \(\omega \in P_n\) such that \(\omega_1 = 5\) and \(\omega_2 = 6\). Therefore, \(-2c_{n-3} = -2 \sum (-1)^{r(\omega')} \text{sgn}(\omega')\), where the summation is over all \(\omega' \in P_{n-3}\), \(\sum (-1)^{r(\omega)} \text{sgn}(\omega)\), where the summation is over all \(\omega \in P_n\) such that \(\omega_1 = 5\) and \(\omega_2 = 6\).

We may place the set of all \(\omega \in P_n\) such that \(\omega_1 = 5\) and \(\omega_2 = 9\) into 1-1 correspondence with itself by reversing the induced orientation of the subpath consisting of the edges \(e_7, e_3, e_1, e_2, e_4\) and \(e_6\) for each \(\omega \in P_n\) such that \(\omega_1 = 5\) and \(\omega_2 = 9\). If \(\omega \leftrightarrow \omega'\) denotes this correspondence, then \(r(\omega) \equiv r(\omega') \pmod{2}\) and \(\text{sgn}(\omega) = -\text{sgn}(\omega')\). Therefore, \(\sum (-1)^{r(\omega)} \text{sgn}(\omega) = -\sum (-1)^{r(\omega')} \text{sgn}(\omega)\), and so \(\sum (-1)^{r(\omega)} \text{sgn}(\omega) = 0\), where each summation is over all \(\omega \in P_n\) such that \(\omega_1 = 5\) and \(\omega_2 = 9\).

The next lemma is immediate from Lemma 2 and Theorem 2.

Lemma 3. The \(c_n\)'s satisfy the difference equation \(c_n = c_{n-1} + c_{n-2} - c_{n-3}\) for \(n > 4\) with the initial conditions \(c_2 = c_3 = -2\) and \(c_4 = -6\).

We obtain by induction from Lemma 3 and \(c_{n-1} \leq c_{n-2} \leq c_{n-3}\) for \(n > 4\) that \(c_n = c_{n-1} + (c_{n-2} - c_{n-3}) \leq c_{n-1}\). Thus \(c_n \leq c_{n-1} < 0\) for \(n > 2\). In fact, solving the difference equation with the initial conditions in Lemma 3 we obtain \(c_n = 2 - 4\lambda(\frac{1}{2}n)\) for \(n > 1\). This completes the proof of Theorem 4.

As a final remark the computations above are all valid if the \(A_j\)'s are regarded as \(m \times m\) matrices for any \(m \leq n\).

REFERENCES

MATHEMATICAL SCIENCES DEPARTMENT, BALL STATE UNIVERSITY, MUNCIE, INDIANA 47306