Closed mappings of $\sigma$-locally compact metric spaces
HTML articles powered by AMS MathViewer
- by S. A. Stricklen
- Proc. Amer. Math. Soc. 51 (1975), 221-224
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377805-4
- PDF | Request permission
Abstract:
We show that a metric space $M$ is $\sigma$-locally compact if and only if every image of $M$ under a closed, continuous function is the countable union of closed, metrizable, locally compact subspaces. Several other theorems about closed, continuous images of metric spaces are given; one of these is that the closed, continuous image of a complete, $\sigma$-locally compact metric space must contain a dense, metrizable open set.References
- Jun-iti Nagata, Problems on generalized metric spaces, Topology Conference (Proc. General Topology Conf., Emory Univ., Atlanta, Ga., 1970) Dept. Math., Emory Univ., Atlanta, Ga., 1970, pp. 63–70. MR 0346757
- Ben Fitzpatrick Jr., Some topologically complete spaces, General Topology and Appl. 1 (1971), no. 1, 101–103; errata, MR 45, p. 1978. MR 298660, DOI 10.1016/0016-660X(71)90115-2
- K. R. Van Doren, Closed, continuous images of complete metric spaces, Fund. Math. 80 (1973), no. 1, 47–50. MR 358674, DOI 10.4064/fm-80-1-47-50
- A. H. Stone, Metrizability of decomposition spaces, Proc. Amer. Math. Soc. 7 (1956), 690–700. MR 87078, DOI 10.1090/S0002-9939-1956-0087078-6
- Kiiti Morita and Sitiro Hanai, Closed mappings and metric spaces, Proc. Japan Acad. 32 (1956), 10–14. MR 87077
- N. Lašnev, On continuous decompositions and closed mappings of metric spaces, Dokl. Akad. Nauk SSSR 165 (1965), 756–758 (Russian). MR 0192478
- Kiiti Morita, On closed mappings, Proc. Japan Acad. 32 (1956), 539–543. MR 85494
- A. H. Stone, Paracompactness and product spaces, Bull. Amer. Math. Soc. 54 (1948), 977–982. MR 26802, DOI 10.1090/S0002-9904-1948-09118-2
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 221-224
- MSC: Primary 54C10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377805-4
- MathSciNet review: 0377805