On the number of irreducible representations of degree $\leq n$ of a Lie group
Author:
O. S. Rothaus
Journal:
Proc. Amer. Math. Soc. 51 (1975), 217-220
MSC:
Primary 22E45; Secondary 10H25
DOI:
https://doi.org/10.1090/S0002-9939-1975-0382550-5
MathSciNet review:
0382550
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We give a proof of part of a result of Robert Cahn [1] on the asymptotic behavior of the number of irreducible representations of degree $\leq n$ of a semisimple Lie group. The argument is a general one and does not depend on classification.
- Robert S. Cahn, Lattice points and Lie groups. I, II, Trans. Amer. Math. Soc. 183 (1973), 119–129; ibid. 183 (1973), 131–137. MR 335687, DOI https://doi.org/10.1090/S0002-9947-1973-0335687-3
- O. S. Rothaus, The volume of a region defined by polynomial inequalities, Proc. Amer. Math. Soc. 42 (1974), 265–267. MR 331219, DOI https://doi.org/10.1090/S0002-9939-1974-0331219-0
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E45, 10H25
Retrieve articles in all journals with MSC: 22E45, 10H25
Additional Information
Keywords:
Semisimple Lie algebra,
irreducible representation
Article copyright:
© Copyright 1975
American Mathematical Society