The map of the Witt ring of a domain into the Witt ring of its field of fractions
HTML articles powered by AMS MathViewer
- by Thomas C. Craven, Alex Rosenberg and Roger Ware
- Proc. Amer. Math. Soc. 51 (1975), 25-30
- DOI: https://doi.org/10.1090/S0002-9939-1975-0384789-1
- PDF | Request permission
Abstract:
Let $R$ be an integral domain with field of fractions $K$. This paper studies the kernel of the map $W(R) \to W(K)$, where $W$ is the Witt ring functor. In case $R$ is regular and noetherian, it is shown that the kernel is a nilideal. The kernel is zero if $R$ is a complete regular local noetherian ring with 2 a unit. Examples are given to show that the regularity assumptions are needed.References
- N. Bourbaki, Éléments de mathématique. Fasc. XXXI. Chap. 7, Algèbre commutative, Actualités Sci. Indust., no. 1314, Hermann, Paris, 1965. MR 41 #5339.
T. C. Craven, Witt rings and orderings of fields, Ph. D. Thesis, Cornell University, Ithaca, N. Y., 1973.
- Irving Kaplansky, Fields and rings, University of Chicago Press, Chicago, Ill.-London, 1969. MR 0269449
- Max Karoubi, Périodicité de la $K$-théorie hermitienne, Algebraic $K$-theory, III: Hermitian $K$-theory and geometric applications (Proc. Conf., Battelle Memorial Inst., Seattle, Wash., 1972) Lecture Notes in Math., Vol. 343, Springer, Berlin, 1973, pp. 301–411 (French). MR 0382400
- Manfred Knebusch, Grothendieck- und Wittringe von nichtausgearteten symmetrischen Bilinearformen, S.-B. Heidelberger Akad. Wiss. Math.-Natur. Kl. 1969/70 (1969/1970), 93–157 (German). MR 0271118
- Manfred Knebusch, Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arith. 24 (1973), 279–299. MR 349582, DOI 10.4064/aa-24-3-279-299
- Manfred Knebusch, Real closures of commutative rings. I, J. Reine Angew. Math. 274(275) (1975), 61–89. MR 387262, DOI 10.1515/crll.1975.274-275.61
- Manfred Knebusch, Alex Rosenberg, and Roger Ware, Structure of Witt rings and quotients of Abelian group rings, Amer. J. Math. 94 (1972), 119–155. MR 296103, DOI 10.2307/2373597 —, Signatures on semi-local rings, J. Algebra 26 (1973), 208-250.
- D. G. Northcott, Ideal theory, Cambridge Tracts in Mathematics and Mathematical Physics, No. 42, Cambridge, at the University Press, 1953. MR 0058575
- Albrecht Pfister, Quadratische Formen in beliebigen Körpern, Invent. Math. 1 (1966), 116–132 (German). MR 200270, DOI 10.1007/BF01389724
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 25-30
- MSC: Primary 13K05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0384789-1
- MathSciNet review: 0384789