On infinitely divisible laws in $C[0,1]$
HTML articles powered by AMS MathViewer
- by Aloisio Pessoa De Araujo
- Proc. Amer. Math. Soc. 51 (1975), 179-185
- DOI: https://doi.org/10.1090/S0002-9939-1975-0407918-X
- PDF | Request permission
Erratum: Proc. Amer. Math. Soc. 56 (1976), 393.
Abstract:
In Euclidean spaces, or in a separable Hilbert space, the characteristic function of an infinitely divisible distribution has the familiar form given by the LĂ©vy-Khintchine formula. The LĂ©vy measures $M$ of this formula are characterized by the property that the integral of $\min [1,||x|{|^2}]$ with respect to $M$ is finite. This simple situation no longer holds in the Banach space $C = C[0,1]$ where integrability of $\min [1,||x||]$ is sufficient but integrability of $\min [1,||x|{|^2}]$ is neither necessary nor sufficient. Certain other conditions which are sufficient to imply that $M$ is the LĂ©vy measure of a distribution on $C$ can be obtained with the use of an integral formula of Garsia.References
- K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
- S. R. S. Varadhan, Limit theorems for sums of independent random variables with values in a Hilbert space, SankhyÄ Ser. A 24 (1962), 213â238. MR 171305
- A. M. Garsia, E. Rodemich, and H. Rumsey Jr., A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J. 20 (1970/71), 565â578. MR 267632, DOI 10.1512/iumj.1970.20.20046
- R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis 1 (1967), 290â330. MR 0220340, DOI 10.1016/0022-1236(67)90017-1
- Jean-Pierre Kahane, SĂ©ries de Fourier alĂ©atoires, SĂ©minaire de MathĂ©matiques SupĂ©rieures, No. 4 (ĂtĂ©, vol. 1963, Les Presses de lâUniversitĂ© de MontrĂ©al, Montreal, Que., 1967 (French). DeuxiĂšme Ă©dition multigraphiĂ©e (RĂ©impression). MR 0268586 L. M. LeCam, Remarques sur le thĂ©orĂšme limite central dans les espaces localement convexes, Les ProbabilitĂ©s sur les Structures AlgĂ©briques, C.N.R.S., Paris, 1970.
- Adriano M. Garsia, Continuity properties of Gaussian processes with multidimensional time parameter, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 369â374. MR 0410880
- Christopher Preston, Continuity properties of some Gaussian processes, Ann. Math. Statist. 43 (1972), 285â292. MR 307316, DOI 10.1214/aoms/1177692721
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 179-185
- MSC: Primary 60B05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0407918-X
- MathSciNet review: 0407918