Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2024 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On infinitely divisible laws in $C[0,1]$
HTML articles powered by AMS MathViewer

by Aloisio Pessoa De Araujo
Proc. Amer. Math. Soc. 51 (1975), 179-185
DOI: https://doi.org/10.1090/S0002-9939-1975-0407918-X

Erratum: Proc. Amer. Math. Soc. 56 (1976), 393.

Abstract:

In Euclidean spaces, or in a separable Hilbert space, the characteristic function of an infinitely divisible distribution has the familiar form given by the LĂ©vy-Khintchine formula. The LĂ©vy measures $M$ of this formula are characterized by the property that the integral of $\min [1,||x|{|^2}]$ with respect to $M$ is finite. This simple situation no longer holds in the Banach space $C = C[0,1]$ where integrability of $\min [1,||x||]$ is sufficient but integrability of $\min [1,||x|{|^2}]$ is neither necessary nor sufficient. Certain other conditions which are sufficient to imply that $M$ is the LĂ©vy measure of a distribution on $C$ can be obtained with the use of an integral formula of Garsia.
References
  • K. R. Parthasarathy, Probability measures on metric spaces, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR 0226684
  • S. R. S. Varadhan, Limit theorems for sums of independent random variables with values in a Hilbert space, Sankhyā Ser. A 24 (1962), 213–238. MR 171305
  • A. M. Garsia, E. Rodemich, and H. Rumsey Jr., A real variable lemma and the continuity of paths of some Gaussian processes, Indiana Univ. Math. J. 20 (1970/71), 565–578. MR 267632, DOI 10.1512/iumj.1970.20.20046
  • R. M. Dudley, The sizes of compact subsets of Hilbert space and continuity of Gaussian processes, J. Functional Analysis 1 (1967), 290–330. MR 0220340, DOI 10.1016/0022-1236(67)90017-1
  • Jean-Pierre Kahane, SĂ©ries de Fourier alĂ©atoires, SĂ©minaire de MathĂ©matiques SupĂ©rieures, No. 4 (ÉtĂ©, vol. 1963, Les Presses de l’UniversitĂ© de MontrĂ©al, Montreal, Que., 1967 (French). DeuxiĂšme Ă©dition multigraphiĂ©e (RĂ©impression). MR 0268586
  • L. M. LeCam, Remarques sur le thĂ©orĂšme limite central dans les espaces localement convexes, Les ProbabilitĂ©s sur les Structures AlgĂ©briques, C.N.R.S., Paris, 1970.
  • Adriano M. Garsia, Continuity properties of Gaussian processes with multidimensional time parameter, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 369–374. MR 0410880
  • Christopher Preston, Continuity properties of some Gaussian processes, Ann. Math. Statist. 43 (1972), 285–292. MR 307316, DOI 10.1214/aoms/1177692721
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 60B05
  • Retrieve articles in all journals with MSC: 60B05
Bibliographic Information
  • © Copyright 1975 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 51 (1975), 179-185
  • MSC: Primary 60B05
  • DOI: https://doi.org/10.1090/S0002-9939-1975-0407918-X
  • MathSciNet review: 0407918