## On infinitely divisible laws in $C[0,1]$

HTML articles powered by AMS MathViewer

- by Aloisio Pessoa De Araujo PDF
- Proc. Amer. Math. Soc.
**51**(1975), 179-185 Request permission

Erratum: Proc. Amer. Math. Soc.

**56**(1976), 393.

## Abstract:

In Euclidean spaces, or in a separable Hilbert space, the characteristic function of an infinitely divisible distribution has the familiar form given by the LĂ©vy-Khintchine formula. The LĂ©vy measures $M$ of this formula are characterized by the property that the integral of $\min [1,||x|{|^2}]$ with respect to $M$ is finite. This simple situation no longer holds in the Banach space $C = C[0,1]$ where integrability of $\min [1,||x||]$ is sufficient but integrability of $\min [1,||x|{|^2}]$ is neither necessary nor sufficient. Certain other conditions which are sufficient to imply that $M$ is the LĂ©vy measure of a distribution on $C$ can be obtained with the use of an integral formula of Garsia.## References

- K. R. Parthasarathy,
*Probability measures on metric spaces*, Probability and Mathematical Statistics, No. 3, Academic Press, Inc., New York-London, 1967. MR**0226684** - S. R. S. Varadhan,
*Limit theorems for sums of independent random variables with values in a Hilbert space*, SankhyÄ Ser. A**24**(1962), 213â238. MR**171305** - A. M. Garsia, E. Rodemich, and H. Rumsey Jr.,
*A real variable lemma and the continuity of paths of some Gaussian processes*, Indiana Univ. Math. J.**20**(1970/71), 565â578. MR**267632**, DOI 10.1512/iumj.1970.20.20046 - R. M. Dudley,
*The sizes of compact subsets of Hilbert space and continuity of Gaussian processes*, J. Functional Analysis**1**(1967), 290â330. MR**0220340**, DOI 10.1016/0022-1236(67)90017-1 - Jean-Pierre Kahane,
*SĂ©ries de Fourier alĂ©atoires*, Les Presses de lâUniversitĂ© de MontrĂ©al, Montreal, Que., 1967 (French). DeuxiĂšme Ă©dition multigraphiĂ©e (RĂ©impression); SĂ©minaire de MathĂ© matiques SupĂ©rieures, No. 4 (ĂtĂ©, 1963). MR**0268586**
L. M. LeCam, - Adriano M. Garsia,
*Continuity properties of Gaussian processes with multidimensional time parameter*, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp.Â 369â374. MR**0410880** - Christopher Preston,
*Continuity properties of some Gaussian processes*, Ann. Math. Statist.**43**(1972), 285â292. MR**307316**, DOI 10.1214/aoms/1177692721

*Remarques sur le thĂ©orĂšme limite central dans les espaces localement convexes*, Les ProbabilitĂ©s sur les Structures AlgĂ©briques, C.N.R.S., Paris, 1970.

## Additional Information

- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**51**(1975), 179-185 - MSC: Primary 60B05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0407918-X
- MathSciNet review: 0407918