Remark on nilpotent orbits
HTML articles powered by AMS MathViewer
- by Joseph A. Wolf
- Proc. Amer. Math. Soc. 51 (1975), 213-216
- DOI: https://doi.org/10.1090/S0002-9939-1975-0422520-1
- PDF | Request permission
Abstract:
If $G$ is a reductive Lie group and ${\mathcal {O}_f} = \operatorname {Ad} {(G)^ \ast }f$ is a nilpotent coadjoint orbit with invariant real polarization $\mathfrak {p}$, then ${\mathcal {O}_f}$ is identified as an open $G$-orbit on the cotangent bundle of $G/P$.References
- L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255–354. MR 293012, DOI 10.1007/BF01389744
- Hideki Ozeki and Minoru Wakimoto, On polarizations of certain homogenous spaces, Proc. Japan Acad. 48 (1972), 1–4. MR 311840
- Linda Preiss Rothschild and Joseph A. Wolf, Representations of semisimple groups associated to nilpotent orbits, Ann. Sci. École Norm. Sup. (4) 7 (1974), 155–173 (1975). MR 357690
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 213-216
- MSC: Primary 22E45
- DOI: https://doi.org/10.1090/S0002-9939-1975-0422520-1
- MathSciNet review: 0422520