REMARK ON NILPOTENT ORBITS

JOSEPH A. WOLF1

ABSTRACT. If G is a reductive Lie group and $\mathcal{O}_f = \operatorname{Ad}(G)^* f$ is a nilpotent coadjoint orbit with invariant real polarization \mathfrak{p} , then \mathfrak{O}_f is identified as an open G-orbit on the cotangent bundle of G/P.

Introduction. Let $R^{4,1}$ denote real 5-space with the bilinear form $b(x, y) = x^1y^1 + \ldots + x^4y^4 - x^5y^5$ and let C^+ denote its forward light cone $\{x \in R^{4,1}: b(x, x) = 0 \text{ and } x^5 > 0\}$. The rays in C^+ form a 3-sphere S^3 , and so the identity component SO(4, 1) of the orthogonal group of $R^{4,1}$ acts on the cotangent bundle $\mathcal{F}^*(S^3)$. This observation is due to B. Kostant, who noted that SO(4, 1) is transitive on the symplectic manifold $\mathcal{F}^*(S^3)$ —(zero section) and asked Y. Akyildiz to identify that space as a coadjoint orbit for SO(4, 1). Akyildiz identified it as a nilpotent coadjoint orbit, and Kostant noted from dimension considerations that the nilpotent elements in question must be regular-nilpotent. Kostant and I then conjectured that if G is semisimple, P is a minimal parabolic subgroup, and $e \in \mathfrak{P}$ is a regular-nilpotent element of \mathfrak{F} , then $Ad(G) \cdot e$ is an open G-orbit on the cotangent bundle $\mathcal{F}^*(G/P)$. Here note that SO(4, 1)/(minimal parabolic) = $SO(4)/SO(3) = S^3$. The conjecture is proved as Corollary 2 below.

We refer to [1] for the language of polarizations.

Lemma. Let g be a real Lie algebra, $f \in g^*$ a linear functional on g, and $q \in g_C$ a complex polarization for f. If f(q) = 0 then q is real in the sense $q = p_C$ where $p = q \cap g$.

Proof. Let G be a Lie group with Lie algebra $\mathfrak g$ and E^0 and D^0 its respective analytic subgroups for

$$e = (q + \overline{q}) \cap g$$
 and $b = (q \cap \overline{q}) \cap g$.

 $\operatorname{Ad}(D^0)^* \cdot f$ is open in the affine subspace $f + e^{\perp}$ of g^* , and $f \in e^{\perp}$ because f(q) = 0, so also $\operatorname{Ad}(E^0)^* \cdot f$ is open in $f + e^{\perp}$. As $g^f \in b \in e$, now dim $e = e^{\perp}$

Received by the editors May 21, 1974.

AMS (MOS) subject classifications (1970). Primary 22E45, 53C99; Secondary 22E15, 22E43.

¹ Research partially supported by NSF Grant GP-16651.

 $\dim(f + e^{\perp}) - \dim g^{f} = \dim b$, this forces e = b, and we conclude $q = \overline{q}$. Q.E.D.

Theorem.² Let G be a Lie group, $f \in g^*$, q a complex polarization for f such that f(q) = 0, and $p = q \cap g$. Let P be a closed subgroup of G with Lie algebra p such that $G^f \subset P$. Then $\mathbb{C}_f = \operatorname{Ad}(G)^* \cdot f$ is equivariantly diffeomorphic to an open G-orbit in the cotangent bundle $f^*(G/P)$.

Proof. As in the lemma, $Ad(P)^* \cdot f$ is open in the subspace $f + \beta^{\perp} = \beta^{\perp}$ of g^* .

G/P has tangent space g/\mathfrak{P} , hence cotangent space $(g/\mathfrak{P})^* = \mathfrak{P}^\perp$, all this as P-modules. Thus $\mathcal{G}^*(G/P)$ is the G-homogeneous bundle $G \times_P \mathfrak{P}^\perp$. It consists of all classes

$$[g, y] = \{(gp^{-1}, Ad(p)^*y): p \in P\} \subset G \times \mathfrak{P}^{\perp}$$

with quotient differentiable structure from $G \times \mathfrak{P}^{\perp}$ and with left action of G given by g'[g, y] = [g'g, y]. Define a G-orbit on $\mathfrak{I}^*(G/P)$ by

$$\Omega_f = G([1, f]) = \{[g, f] \in G \times_p \ \mathfrak{P}^\perp \colon g \in G\}.$$

Then

$$\dim \Omega_f = \dim (G/P) + \dim (\operatorname{Ad}(P)^* \cdot f) = \dim \mathfrak{G} - \dim \mathfrak{P} + \dim \mathfrak{P}^\perp$$
$$= \dim (G \times_P \mathfrak{P}^\perp) = \dim \mathfrak{T}^*(G/P),$$

so Ω_f is open in $\mathcal{I}^*(G/P)$.

Map the orbit \mathcal{O}_f to Ω_f by $\mathrm{Ad}(g)^*f \mapsto [g,f]$. This is well defined, for if $\mathrm{Ad}(g)^*f = \mathrm{Ad}(g')^*f$ then g' = gp with $p \in G^f \subset P$ so $[g',f] = [gp,f] = [g,\mathrm{Ad}(p)^*f] = [g,f]$. It is visibly G-equivariant with image Ω_f , and is one-to-one because [g,f] = [g',f] forces $[g^{-1}g',f] = [1,f]$ whence $g^{-1}g' \in G^f \subset P$. Q.E.D.

We now suppose that G is a reductive Lie group, i.e. that its Lie algebra $g = g_1 \oplus c$ where c is the center and $g_1 = [g, g]$ is semisimple. We also suppose that g has a nondegenerate Ad(G)-invariant symmetric bilinear form \langle , \rangle . That is automatic for example if $\{Ad(g)|_c : g \in G\}$ is precompact, e.g. when if $g \in G$ then Ad(g) is an inner automorphism on g_C , in particular when G is connected. The form \langle , \rangle gives a G-equivariant isomorphism of g to g^* , say $x \to x^*$, by $x^*(y) = \langle x, y \rangle$. We say that x and x^* ,

² Originally we started with Corollary 1 below (same proof). Alan Weinstein suggested the possibility of a more general formulation.

and their G-orbits, are "nilpotent" when $x \in [g, g]$ with $ad(x): g \rightarrow g$ nilpotent as linear transformation.

Combining [2, Theorem 2.2] and [3, Proposition 2.3.2] we have

Lemma. Let G be reductive as above, $x \in g$, and q a complex polarization for x^* . Then q is a parabolic subalgebra of g_C , and $x^*(q) = 0$ if and only if x is nilpotent.

Now we can prove

Corollary 1. Let G be reductive as above, $e \in g$ a nilpotent element, q a complex polarization for e^* , and P the parabolic subgroup of G with Lie algebra $p = q \cap g$. Then $Ad(G) \cdot e$ is equivariantly diffeomorphic to an open G-orbit on $\mathcal{T}^*(G/P)$ if, and only if, the polarization q is $Ad(G^e)$ -invariant.

Proof. If q is $Ad(G^e)$ -invariant, then $G^e \subset P$, and the Theorem realizes $Ad(G) \cdot e$ as an open G-orbit on $\mathcal{F}^*(G/P)$. If $Ad(G) \cdot e$ is equivariantly diffeomorphic to an open G-orbit on $\mathcal{F}^*(G/P)$, then the diffeomorphism must be given as in the proof of the Theorem; that requires $G^e \subset P$, and so q is $Ad(G^e)$ -invariant. Q.E.D.

If $e \in g$ is regular-nilpotent then e is contained in a unique minimal parabolic subalgebra β of g. Now e is in the nilradical $\beta_n = \beta^{\perp}$, so $q = \beta_C$ is a complex polarization for e^* , and q is $Ad(G^e)$ -invariant by uniqueness of β . Thus Corollary 1 specializes to

Corollary 2. Let G be reductive as above, $e \in g$ a regular-nilpotent element, and P the unique minimal parabolic subgroup of G whose Lie algebra contains e. Then $Ad(G) \cdot e$ is G-equivariantly diffeomorphic to an open G-orbit on $\mathcal{T}^*(G/P)$.

Remarks. 1. When [g, g] is isomorphic to the Lie algebra of SO(n, 1), then in Corollary 2 we have $Ad(P) \cdot e = p_n - \{0\} = p^{\perp} - \{0\}$, so the open G-orbit is $\mathcal{J}^*(G/P)$ -(the zero cross section).

2. Let P be any parabolic subgroup of G, β its Lie algebra, and β_n the nilradical of β . R. W. Richardson and C. C. Moore independently showed that there are open Ad(P)-orbits on β_n . If $Ad(P) \cdot e$ is one of them, then $e^*(\beta) = 0$, and a dimension count shows that $\beta = \beta_C$ is a complex polarization for e^* . Conversely if $e \in \beta$ is nilpotent and β is a complex polarization

³ This was pointed out to me by B. Kostant.

for e^* , then our lemmas show $q = \mathfrak{P}_C$ with \mathfrak{P} parabolic in \mathfrak{g} , $e \in \mathfrak{P}^\perp = \mathfrak{P}_n$ and $Ad(P) \cdot e$ open in \mathfrak{P}_n . But there are many instances in which q is not $Ad(G^e)$ -invariant. The invariant case is characterized in Corollary 1.

REFERENCES

- 1. L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255-354. MR 45 #2092.
- 2. H. Ozeki and M. Wakimoto, On polarizations of certain homogeneous spaces, Proc. Japan Acad. 48 (1972), 1-4. MR 47 #402.
- 3. L. P. Rothschild and J. A. Wolf, Representations of semisimple groups associated to nilpotent orbits, Ann. Sci. École Norm. Sup. 7 (1974), 155-174.

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: Institute of Mathematics, The Hebrew University, Jerusalem, Israel