REMARK ON NILPOTENT ORBITS

JOSEPH A. WOLF

ABSTRACT. If G is a reductive Lie group and $\Theta_f = \text{Ad}(G)^*f$ is a nilpotent coadjoint orbit with invariant real polarization \mathfrak{p}, then Θ_f is identified as an open G-orbit on the cotangent bundle of G/P.

Introduction. Let $R^{4,1}$ denote real 5-space with the bilinear form $b(x, y) = x^1 y^1 + \ldots + x^4 y^4 - x^5 y^5$ and let C^+ denote its forward light cone \{ $x \in R^{4,1}$: $b(x, x) = 0$ and $x^5 > 0$ \}. The rays in C^+ form a 3-sphere S^3, and so the identity component $SO(4, 1)$ of the orthogonal group of $R^{4,1}$ acts on the cotangent bundle $T^*(S^3)$. This observation is due to B. Kostant, who noted that $SO(4, 1)$ is transitive on the symplectic manifold $T^*(S^3)$—(zero section) and asked Y. Akyildiz to identify that space as a coadjoint orbit for $SO(4, 1)$. Akyildiz identified it as a nilpotent coadjoint orbit, and Kostant noted from dimension considerations that the nilpotent elements in question must be regular-nilpotent. Kostant and I then conjectured that if G is semisimple, P is a minimal parabolic subgroup, and $\mathfrak{e} \in \mathfrak{p}$ is a regular-nilpotent element of \mathfrak{g}, then $\text{Ad}(G) \cdot \mathfrak{e}$ is an open G-orbit on the cotangent bundle $T^*(G/P)$. Here note that $SO(4, 1)/(\text{minimal parabolic}) = SO(4)/SO(3) = S^3$. The conjecture is proved as Corollary 2 below.

We refer to [1] for the language of polarizations.

Lemma. Let \mathfrak{g} be a real Lie algebra, $f \in \mathfrak{g}^*$ a linear functional on \mathfrak{g}, and $\mathfrak{q} \subset \mathfrak{g}_C$ a complex polarization for f. If $f(q) = 0$ then q is real in the sense $q = \mathfrak{p}_C$, where $\mathfrak{p} = \mathfrak{q} \cap \mathfrak{g}$.

Proof. Let G be a Lie group with Lie algebra \mathfrak{g} and E^0 and D^0 its respective analytic subgroups for $e = (q + \overline{q}) \cap \mathfrak{g}$ and $b = (q \cap \overline{q}) \cap \mathfrak{g}$.

$\text{Ad}(D^0)^* \cdot f$ is open in the affine subspace $f + e^\perp$ of \mathfrak{g}^*, and $f \in e^\perp$ because $f(q) = 0$, so also $\text{Ad}(E^0)^* \cdot f$ is open in $f + e^\perp$. As $\mathfrak{q}^f \subset b \subset e$, now dim $e =$.
Theorem. 2. Let G be a Lie group, $f \in \mathfrak{g}^*$, q a complex polarization for f such that $f(q) = 0$, and $\mathfrak{p} = q \cap \mathfrak{g}$. Let P be a closed subgroup of G with Lie algebra \mathfrak{p} such that $G^f \subseteq P$. Then $\tilde{\mathcal{O}}_f = \text{Ad}(G)^* \cdot f$ is equivariantly diffeomorphic to an open G-orbit in the cotangent bundle $\mathcal{T}^*(G/P)$.

Proof. As in the lemma, $\text{Ad}(P)^* \cdot f$ is open in the subspace $f + \mathfrak{p}^\perp = \mathfrak{p}^\perp$ of \mathfrak{g}^*.

G/P has tangent space $\mathfrak{g}/\mathfrak{p}$, hence cotangent space $(\mathfrak{g}/\mathfrak{p})^* = \mathfrak{p}^\perp$, all this as P-modules. Thus $\mathcal{T}^*(G/P)$ is the G-homogeneous bundle $G \times_P \mathfrak{p}^\perp$.

It consists of all classes

$$\begin{align*}
[\mathfrak{g}, \mathfrak{y}] &= \{(gp, \text{Ad}(p)^*y) : p \in P \subseteq G \times \mathfrak{p}^\perp\}
\end{align*}$$

with quotient differentiable structure from $G \times \mathfrak{p}^\perp$ and with left action of G given by $g'[\mathfrak{g}, \mathfrak{y}] = [g'g, \mathfrak{y}]$. Define a G-orbit on $\mathcal{T}^*(G/P)$ by

$$\Omega_f = G([1, f]) = \{[g, f] \in G \times_P \mathfrak{p}^\perp : g \in G\}.$$

Then

$$\begin{align*}
\dim \Omega_f &= \dim (G/P) + \dim (\text{Ad}(P)^* \cdot f) = \dim \mathfrak{g} - \dim \mathfrak{p} + \dim \mathfrak{p}^\perp \\
&= \dim (G \times_P \mathfrak{p}^\perp) = \dim \mathcal{T}^*(G/P),
\end{align*}$$

so Ω_f is open in $\mathcal{T}^*(G/P)$.

Map the orbit $\tilde{\mathcal{O}}_f$ to Ω_f by $\text{Ad}(g)^* / \mapsto [g, f]$. This is well defined, for if $\text{Ad}(g)^* / = \text{Ad}(g')^* /$ then $g' = gp$ with $p \in G^f \subseteq P$ so $[g', f] = [gp, f] = [g, \text{Ad}(p)^*] = [g, f]$. It is visibly G-equivariant with image Ω_f, and is one-to-one because $[g, f] = [g', f]$ forces $[g^{-1}g', f] = [1, f]$ whence $g^{-1}g' \in G^f \subseteq P$. Q.E.D.

We now suppose that G is a reductive Lie group, i.e. that its Lie algebra $\mathfrak{g} = \mathfrak{g}_1 \oplus \mathfrak{c}$ where \mathfrak{c} is the center and $\mathfrak{g}_1 = [\mathfrak{g}, \mathfrak{g}]$ is semisimple. We also suppose that \mathfrak{g} has a nondegenerate $\text{Ad}(G)$-invariant symmetric bilinear form \langle , \rangle. That is automatic for example if $\{\text{Ad}(g) : g \in G\}$ is pre-compact, e.g. when if $g \in G$ then $\text{Ad}(g)$ is an inner automorphism on \mathfrak{g}_C, in particular when G is connected. The form \langle , \rangle gives a G-equivariant isomorphism of \mathfrak{g} to \mathfrak{g}^*, say $x \mapsto x^*$, by $x^*(y) = \langle x, y \rangle$. We say that x and x^*,

2 Originally we started with Corollary 1 below (same proof). Alan Weinstein suggested the possibility of a more general formulation.
and their G-orbits, are "nilpotent" when $x \in [\mathfrak{g}, \mathfrak{g}]$ with $\text{ad}(x): \mathfrak{g} \to \mathfrak{g}$ nilpotent as linear transformation.

Combining [2, Theorem 2.2] and [3, Proposition 2.3.2] we have

Lemma. Let G be reductive as above, $x \in \mathfrak{g}$, and \mathfrak{q} a complex polarization for x^*. Then \mathfrak{q} is a parabolic subalgebra of \mathfrak{g}_C, and $x^*(\mathfrak{q}) = 0$ if and only if x is nilpotent.

Now we can prove

Corollary 1. Let G be reductive as above, $e \in \mathfrak{g}$ a nilpotent element, \mathfrak{q} a complex polarization for e^*, and P the parabolic subgroup of G with Lie algebra $\mathfrak{p} = \mathfrak{q} \cap \mathfrak{g}$. Then $\text{Ad}(G) \cdot e$ is equivariantly diffeomorphic to an open G-orbit on $\mathcal{F}^*(G/P)$ if, and only if, the polarization \mathfrak{q} is $\text{Ad}(G^e)$-invariant.

Proof. If \mathfrak{q} is $\text{Ad}(G^e)$-invariant, then $G^e \subset P$, and the Theorem realizes $\text{Ad}(G) \cdot e$ as an open G-orbit on $\mathcal{F}^*(G/P)$. If $\text{Ad}(G) \cdot e$ is equivariantly diffeomorphic to an open G-orbit on $\mathcal{F}^*(G/P)$, then the diffeomorphism must be given as in the proof of the Theorem; that requires $G^e \subset P$, and so \mathfrak{q} is $\text{Ad}(G^e)$-invariant. Q.E.D.

If $e \in \mathfrak{g}$ is regular-nilpotent then e is contained in a unique minimal parabolic subalgebra \mathfrak{p} of \mathfrak{g}. Now e is in the nilradical $\mathfrak{p}_n = \mathfrak{p}^\perp$, so $\mathfrak{q} = \mathfrak{p}_C$ is a complex polarization for e^*, and \mathfrak{q} is $\text{Ad}(G^e)$-invariant by uniqueness of \mathfrak{p}. Thus Corollary 1 specializes to

Corollary 2. Let G be reductive as above, $e \in \mathfrak{g}$ a regular-nilpotent element, and P the unique minimal parabolic subgroup of G whose Lie algebra contains e. Then $\text{Ad}(G) \cdot e$ is G-equivariantly diffeomorphic to an open G-orbit on $\mathcal{F}^*(G/P)$.

Remarks. 1. When $[\mathfrak{g}, \mathfrak{g}]$ is isomorphic to the Lie algebra of $SO(n, 1)$, then in Corollary 2 we have $\text{Ad}(P) \cdot e = \mathfrak{p}_n - 10 = \mathfrak{p}_n^\perp - \{0\}$, so the open G-orbit is $\mathcal{F}^*(G/P)$—(the zero cross section).

2. Let P be any parabolic subgroup of G, \mathfrak{p} its Lie algebra, and \mathfrak{p}_n the nilradical of \mathfrak{p}. R. W. Richardson and C. C. Moore independently showed that there are open $\text{Ad}(P)$-orbits on \mathfrak{p}_n. If $\text{Ad}(P) \cdot e$ is one of them, then $e^*(\mathfrak{p}) = 0$, and a dimension count shows that $\mathfrak{q} = \mathfrak{p}_C$ is a complex polarization for e^*. Conversely if $e \in \mathfrak{g}$ is nilpotent and \mathfrak{q} is a complex polarization
for e^*, then our lemmas show $q = p_C$ with p parabolic in g, $e \in p^\perp = p_n$ and $\text{Ad}(P) \cdot e$ open in p_n. But there are many instances in which q is not $\text{Ad}(G^e)$-invariant. The invariant case is characterized in Corollary 1.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA, BERKELEY, CALIFORNIA 94720

Current address: Institute of Mathematics, The Hebrew University, Jerusalem, Israel