Remark on nilpotent orbits
Author:
Joseph A. Wolf
Journal:
Proc. Amer. Math. Soc. 51 (1975), 213-216
MSC:
Primary 22E45
DOI:
https://doi.org/10.1090/S0002-9939-1975-0422520-1
MathSciNet review:
0422520
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: If $G$ is a reductive Lie group and ${\mathcal {O}_f} = \operatorname {Ad} {(G)^ \ast }f$ is a nilpotent coadjoint orbit with invariant real polarization $\mathfrak {p}$, then ${\mathcal {O}_f}$ is identified as an open $G$-orbit on the cotangent bundle of $G/P$.
- L. Auslander and B. Kostant, Polarization and unitary representations of solvable Lie groups, Invent. Math. 14 (1971), 255–354. MR 293012, DOI https://doi.org/10.1007/BF01389744
- Hideki Ozeki and Minoru Wakimoto, On polarizations of certain homogenous spaces, Proc. Japan Acad. 48 (1972), 1–4. MR 311840
- Linda Preiss Rothschild and Joseph A. Wolf, Representations of semisimple groups associated to nilpotent orbits, Ann. Sci. École Norm. Sup. (4) 7 (1974), 155–173 (1975). MR 357690
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 22E45
Retrieve articles in all journals with MSC: 22E45
Additional Information
Article copyright:
© Copyright 1975
American Mathematical Society