HILBERT-SAMUEL FUNCTIONS OF
COHEN-MACAULAY RINGS

M. BORATYŃSKI AND J. ŚWIĘCICKA

ABSTRACT. Let R be a local ring with a maximal ideal m. It is proved
that in case R is a Cohen-Macaulay (CM.) ring and $\dim m/m^2 - \dim R = 1$,
then the multiplicity of R and its dimension determine uniquely the Hilbert-
Samuel function of R. As a corollary we obtain that the CM. property is de-
termined by the Hilbert-Samuel function in case $\dim m/m^2 - \dim R = 1$. An
example is given which shows that it is not so in case $\dim m/m^2 - \dim R > 1$.

In [1] Matlis has determined explicitly the Hilbert-Samuel functions of
the one-dimensional Cohen-Macaulay rings (abbreviated CM.) whose maximal
ideal can be generated by two elements.

In our paper we shall extend this result to arbitrary n-dimensional CM.
rings with the property that $\dim m/m^2 \leq n + 1$. The possibility of such gen-
eralization was suggested to us by Professor Bialynicki-Birula. Our method
of proof is entirely different from that of Matlis. From our result we can de-
duce that the Hilbert-Samuel polynomial of an n-dimensional local ring deter-
mines the CM. property in case $\dim m/m^2 = n + 1$.

In our paper R will always denote a commutative noetherian local ring
with the maximal ideal m and residue field $k = R/m$. The Hilbert-Samuel
function is defined as $H_R(n) = l(R/m^n)$ where $l(R/m^n)$ denotes the length of
the (artinian) R-module R/m^n. Depth R is defined as a length of a maximal
R-sequence contained in m. The ring R is said to be a C.M. ring if $\dim R =
\text{depth } R$.

Theorem 1. Let R be a C.M. ring with the property that $\dim m/m^2 -
\dim R \leq 1$. Then

$$H_R(i) = \begin{cases} i & \text{if } i \leq l(R), \\
l(R) & \text{if } i > l(R) \end{cases}$$

in case $\dim R = 0$.

If $\dim R = n > 0$ then there exists a (local) C.M. ring R' with $\dim R' = n - 1.
and \(\dim \frac{m'}{m'^2} \leq n \) where \(m' \) is the maximal ideal of \(R' \) such that \(H_{R'}(i) = \sum_{j=0}^{i-1} H_R(j+1) \).

Remark 1. It follows from our theorem that the Hilbert-Samuel function of \(R \) is uniquely determined by the dimension and a number which is equal to the length of some artinian ring. It can be proved that this number is equal to \(e(R) \), the multiplicity of \(R \). So we obtain that in our case the Hilbert-Samuel function of \(R \) is uniquely determined by \(\dim R \) and \(e(R) \). Moreover \(e(R) = 1 \) if and only if \(R \) is a regular ring.

Remark 2. In case \(\dim R = 1 \) we obtain the existence of an artinian (local) ring \(R' \) of length equal to \(e = e(R) \) whose maximal ideal is principal and such that \(H_{R'}(i) = \sum_{j=0}^{i-1} H_{R'}(j+1) \). So

\[
H_{R'}(i) = \begin{cases}
i(i+1)/2 & \text{if } i \leq e, \\ \nu-e(e-1)/2 & \text{if } i > e.
\end{cases}
\]

This proves the result of Matlis [1].

In case \(\dim \frac{m}{m^2} = \dim R = 0 \) our result is obvious so we shall restrict ourselves to the case when \(\dim \frac{m}{m^2} = \dim R = 1 \).

The above theorem is a consequence of the following

Proposition. Let \(R \) be a complete ring with \(\dim R = n > 0 \) and with infinite residue field which moreover satisfies the assumptions of Theorem 1. Then there exists an element \(x \in m \) such that \(\langle m^s : x \rangle = m^{s-1} \) for all \(s \), where \(\langle m^s : x \rangle = \{ r \in R | rx \in m^s \} \).

The proof of the above Proposition will be preceded by a series of lemmas.

By Cohen's theorem a complete local ring \(R \) is a homomorphic image of some regular ring \(\tilde{R} \). We can assume that the kernel \(J \) of the homomorphism \(\tilde{R} \to R \) is contained in \(\tilde{m} \) where \(\tilde{m} \) denotes the maximal ideal in \(\tilde{R} \).

From now on we shall work under the assumptions of the Proposition.

Lemma 1. The ideal \(J \) is generated by one element.

Proof. Let \(J = \langle f_1, f_2, \ldots, f_k \rangle \) where \(k > 1 \) and let \(d \) denote the greatest common divisor of \(\{ f_i \} i = 1, 2, \ldots, k \) (\(R \) is a U.F.D.). If \(d \not\in J \), then \(J = (d) \). So we can suppose that \(d \not\in J \). Let \(f_i = df'_i \) and \(J' = \langle f'_1, \ldots, f'_k \rangle \). We obtain that \(J'd = 0 \) in \(\tilde{R}/J \). So \(J' \) is contained in some prime ideal \(\mathfrak{p} \) which is associated with \(J \). We have \(\dim \tilde{R}/\mathfrak{p} = \dim \tilde{R}/J = n \) because of the C.M. property of \(\tilde{R}/J \) [2]. On the other hand \(\dim \tilde{R} = \dim \tilde{m}/\tilde{m}^2 = \dim \frac{m}{m^2} = n + 1 \) (\(\tilde{m} \subset \tilde{m}^2 \)). The ideal \(J' \) is not contained in any minimal (principal)
prime ideal of \mathcal{R}, so $\dim \mathcal{R}/j' < \dim \mathcal{R} - 1 = n$ which contradicts the fact that $\dim \mathcal{R}/p = n$ ($j' \subset p$). This accomplishes the proof of Lemma 1.

The ring $\text{Gr}(R) = \Pi_{i=0}^{\infty} \text{Gr}(R)_i$ will denote the graded ring associated with the m-adic filtration of R. It is well known [3] that, in case R is a regular ring with $\dim R = d$, the ring $\text{Gr}(R)$ is isomorphic with $k[x_1, \ldots, x_d]$. From now on f will stand for a generator of J which exists by Lemma 1.

Lemma 2. With our assumptions $\text{Gr}(R) = \text{Gr}(\mathcal{R}/(f)) \cong k[x_1, \ldots, x_{n+1}]/J'$ where J' is also generated by one element.

The proof is routine and therefore we shall omit it. A generator of J' will be denoted by f^*.

Proof of the Proposition. Let $x \in m \setminus m^2$ and suppose that $(m^s : x)$ strictly contains m^{s-1}. Then it is easy to see that x is a zero divisor contained in $\text{Gr}(R)_1$. It follows that in case there does not exist an element with the property claimed in the Proposition, each element in $\text{Gr}(R)_1$ is a zero divisor. So $\text{Gr}(R)_1 \subseteq \bigcup \mathfrak{p}_i$ where \mathfrak{p}_i are the associated prime ideals of $\text{Gr}(R)$. Because of the fact that $k = \text{Gr}(R)_0$ is infinite, the 1-forms $\text{Gr}(R)_1 \subset \mathfrak{p}_i$ for some i. It follows that the ideal generated by images of x_1, \ldots, x_{n+1} in $\text{Gr}(R)$ annihilates some nonzero y in $\text{Gr}(R)$. So $x_i y \in J' = (f^*)$. We easily obtain that $y \in (f^*)$, which contradicts the fact that $y \neq 0$ in $\text{Gr}(R)$.

Proof of Theorem 1. If $\dim R = 0$ then each power of m is a principal ideal. So $H_R(i) = \sum_{j=0}^{i-1} l(m^j/m^{j+1}) = i$ if $i \leq l(R)$ and $H_R(i) = l(R)$ if $i \geq l(R)$. Let $\dim R = n > 0$. First we shall suppose that R is complete and has an infinite residue field. By the Proposition there exists $x \in m$ such that $(m^s : x) = m^{s-1}$ for all s. We consider the exact sequence of R-modules:

$$0 \rightarrow \ker \varphi \rightarrow R/m^i \xrightarrow{\varphi} R/m^{i+1} \rightarrow R/Rx + m^{i+1} \rightarrow 0$$

where φ denotes multiplication by x. By our choice of x, the ideal $\ker \varphi = 0$. We obtain that $l(m^j/m^{j+1}) = l(R/Rx + m^{i+1})$. So

$$H_R(i) = \sum_{j=0}^{i-1} l(m^j/m^{j+1}) = \sum_{j=0}^{i-1} l(R/Rx + m^{i+1})$$

$$= \sum_{j=0}^{i-1} H_R'(j + 1)$$

where $R' = R/Rx$.

It follows easily from our choice of x that $x \in m \setminus m^2$ and is not a zero divisor. The ring R is a C.M. ring with $\dim R' = n - 1$ and $\dim m'/m'^2 = n$.

Now let R be an arbitrary ring satisfying the conditions of Theorem 1 with $\dim R = n > 0$. Following Rees we consider the ring $R[X]/m[X]$ which
has an infinite residue field. The C.M. property is preserved and the Hilbert-Samuel function remains unchanged. It follows that all our assumptions of Theorem 1 are unaltered. Nothing will change if we take the completion of $\mathbb{R}[X]_{m[X]}$. From the above considerations Theorem 1 follows immediately.

For any local ring P let W_P denote the Hilbert-Samuel polynomial determined by the Hilbert-Samuel function of P.

Theorem 2. Let S be a C.M. ring such that $\dim \frac{m_S}{m_S^2} - \dim S \leq 1$. If R is a local ring such that $W_R = W_S$ then R is a C.M. ring.

Proof. As before we can assume that R has an infinite residue field.

We define inductively the sequence of local rings. We put $R_0 = R$. Suppose we have defined R_i. We distinguish two cases.

1°. If m_i, the maximal ideal of R_i consists entirely of zero divisors, we put $R_{i+1} = R_i/J$ where $J = \bigcup_{k=1}^{\infty} (0 : m_i^k)$ and $(0 : m_i^k) = \{x \in R_i | m_i^k x = 0\}$.

The maximal ideal of R_{i+1} does not consist anymore entirely of zero divisors.

2°. If m_i contains a nonzero divisor we put $R_{i+1} = R_i/Rx$ where x has the property that $(m_i^n : x) = m_i^{n-1}$ for almost all n. Such an element exists by [2, Chapter II, Corollary of Theorem 2].

In case 1° we shall show that

$$W_{R_i} = W_{R_{i+1}} + a$$

where a is a nonzero constant. In fact we have $l_{R_{i+1}}(j) \leq l_{R_i}(j)$ for all j with equality for almost all j. (The equality holds for $n > k$ where k has the property that $m_i^k \cap J = 0$; such a k exists because J is an artinian R-module.)

It follows that the Hilbert-Samuel polynomials W_{R_i} and $W_{R_{i+1}}$ differ by a constant. We have $l_{R_{i+1}}(j) < l_{R_i}(j)$ if j has the property that $J \subseteq m_i^j$ and $J \notin m_i^{j+1}$. So the above-mentioned constant is nonzero.

In case 2° it follows from the proof of Theorem 1 that for large n, the function $H_{R_i}(n) = \sum_{j=0}^{n-1} H_{R_{i+1}}(j + 1) + a$ where a is a constant. So for large n we obtain that

$$W_{R_i}(n) = \sum_{j=0}^{n-1} W_{R_{i+1}}(j + 1) + b$$

where b is a constant which depends on a and the differences $W_{R_{i+1}}(j + 1) - H_{R_{i+1}}(j + 1)$ for small j.

In particular we obtain that $e(R) = e(R_i)$ for all i since the leading coefficient of W_{R_i} is equal to $e(R_i)$ divided by the factorial of $\dim R_i$.

After some number of steps of our inductive construction we obtain a zero-dimensional ring which is C.M. Let t be the smallest number with the
property that R_t is C.M. The symbol D_i will denote the polynomial $W_{R, i} - W_{R, t}[[X_1, ..., X_s]]$ where $s = \dim R_i - \dim R_t$ and $0 \leq i < t$. We shall prove by induction on s that $D_i \neq 0$ and $\deg D_i = s$. If $s = 0$ then $i = t - 1$ and by (1) $D_{t - 1} = a \neq 0$ (the maximal ideal of $R_{t - 1}$ consists entirely of zero divisors).

Suppose our assertion is true for some s and let us take such an i that $\dim R_i - \dim R_t = s$ and $\dim R_{i - 1} > \dim R_i$. Then for large n

$$W_{R, i - 1}(n) = \sum_{j=0}^{n-1} W_{R, i}(j + 1) + b \quad \text{by (2)}.$$

For large n we have

$$D_{i - 1}(n) = W_{R, i - 1}(n) - W_{R, t}[[X_1, ..., X_{s+1}]](n)$$

$$= \sum_{j=0}^{n-1} W_{R, i}(j + 1) + b - \sum_{j=0}^{n-1} W_{R, t}[[X_1, ..., X_s]](j + 1)$$

$$= \sum_{j=0}^{n-1} (W_{R, i} - W_{R, t}[[X_1, ..., X_s]])(j + 1) + b = \sum_{j=0}^{n-1} D_t(j + 1) + b.$$

So $\deg D_{i - 1} = \deg D_i + 1 = s + 1$ and $D_{i - 1} \neq 0$. If $\dim R_{i - 2} - \dim R_t = s + 1$, then $\deg D_{i - 2} = s + 1$, since $W_{R, i - 1}$ and $W_{R, i - 2}$ differ by a constant. This finishes the proof of our assertion.

In particular for $i = 0$ we have $D_0 = W_R - W_{R, t}[[X_1, ..., X_d]] \neq 0$ if $t > 0$ where $d = \dim R - \dim R_t$. Let us put $S = R_t[[X_1, ..., X_d]]$. The ring S is a C.M. ring such that $e(S) = e(R)$, $\dim R = \dim S$, $m_s/m_s^2 - \dim S \leq 1$ and finally, $W_R \neq W_S$ if R is a non-C.M. ring. In view of Remark 1 the Theorem 2 is proved.

Example. Set $R = k[X, Y, Z, T]/(X^2, Y^3, XY^2, XT, YT, ZT, T^2)(X, Y, Z, T)$ and

Both rings are one dimensional. The ring R is not a C.M. ring because t is annihilated by its maximal ideal, while S is a C.M. ring because t is not a zero divisor in it. It is easy to calculate that

$$H_R(i) = H_S(i) = \begin{cases} 1 & \text{if } i = 1, \\ 5i - 5 & \text{if } i > 1. \end{cases}$$
This shows that the assumption concerning the difference between the dimension of the tangent space and the dimension of the ring is essential.

We express our thanks to Professor Białynicki-Birula for his encouragement.

REFERENCES