Uniform absolute continuity in spaces of set functions
HTML articles powered by AMS MathViewer
- by James D. Stein
- Proc. Amer. Math. Soc. 51 (1975), 137-140
- DOI: https://doi.org/10.1090/S0002-9939-1975-0440012-0
- PDF | Request permission
Abstract:
Let $X$ be a regular topological space, $K$ a collection of bounded regular measures defined on the Borel sets of $X$. The following conditions are equivalent. (1) Let $M(X)$ denote the Borel measures, $M{(X)^ + }$ the nonnegative members of $M(X)$. There is a $\lambda \in M{(X)^ + }$ such that $K$ is uniformly $\lambda$-continuous. (2) If $\{ {U_n}|n = 1,2, \ldots \}$ is a disjoint sequence of open sets, then ${\lim _{{n^{ \to \infty }}}}\mu ({U_n}) = 0$ uniformly for $\mu \in K$. (3) If $E$ is a Borel subset of $X$ and $\epsilon > 0$, there is a compact set $F \subseteq E$ such that $|\mu |(E \sim F) < \epsilon$ for $\mu \in K$. (4) If $\{ {E_n}|n = 1,2, \ldots \}$ is a disjoint sequence of Borel sets, then ${\lim _{n \to \infty }}\mu ({E_n}) = 0$ uniformly for $\mu \in K$.References
- A. Grothendieck, Sur les applications linéaires faiblement compactes d’espaces du type $C(K)$, Canad. J. Math. 5 (1953), 129–173 (French). MR 58866, DOI 10.4153/cjm-1953-017-4
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 137-140
- MSC: Primary 28A32
- DOI: https://doi.org/10.1090/S0002-9939-1975-0440012-0
- MathSciNet review: 0440012