Uniform absolute continuity in spaces of set functions

Author:
James D. Stein

Journal:
Proc. Amer. Math. Soc. **51** (1975), 137-140

MSC:
Primary 28A32

DOI:
https://doi.org/10.1090/S0002-9939-1975-0440012-0

MathSciNet review:
0440012

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $X$ be a regular topological space, $K$ a collection of bounded regular measures defined on the Borel sets of $X$. The following conditions are equivalent. (1) Let $M(X)$ denote the Borel measures, $M{(X)^ + }$ the nonnegative members of $M(X)$. There is a $\lambda \in M{(X)^ + }$ such that $K$ is uniformly $\lambda$-continuous. (2) If $\{ {U_n}|n = 1,2, \ldots \}$ is a disjoint sequence of open sets, then ${\lim _{{n^{ \to \infty }}}}\mu ({U_n}) = 0$ uniformly for $\mu \in K$. (3) If $E$ is a Borel subset of $X$ and $\epsilon > 0$, there is a compact set $F \subseteq E$ such that $|\mu |(E \sim F) < \epsilon$ for $\mu \in K$. (4) If $\{ {E_n}|n = 1,2, \ldots \}$ is a disjoint sequence of Borel sets, then ${\lim _{n \to \infty }}\mu ({E_n}) = 0$ uniformly for $\mu \in K$.

- A. Grothendieck,
*Sur les applications linéaires faiblement compactes d’espaces du type $C(K)$*, Canad. J. Math.**5**(1953), 129–173 (French). MR**58866**, DOI https://doi.org/10.4153/cjm-1953-017-4

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
28A32

Retrieve articles in all journals with MSC: 28A32

Additional Information

Article copyright:
© Copyright 1975
American Mathematical Society