Convergence, closed projections and compactness
HTML articles powered by AMS MathViewer
- by J. E. Vaughan
- Proc. Amer. Math. Soc. 51 (1975), 469-476
- DOI: https://doi.org/10.1090/S0002-9939-1975-0370462-2
- PDF | Request permission
Abstract:
In this paper several results of N. Noble concerning closed projections are extended using generalizations of first countable, Fréchet, and sequential spaces. We also consider compactness conditions defined by requiring that certain nets have cluster points.References
- A. V. Arhangel′skiĭ and S. P. Franklin, Ordinal invariants for topological spaces, Michigan Math. J. 15 (1968), 313–320; addendum, ibid. 15 (1968), 506. MR 0240767
- Garrett Birkhoff, Moore-Smith convergence in general topology, Ann. of Math. (2) 38 (1937), no. 1, 39–56. MR 1503323, DOI 10.2307/1968508 I. Fleischer and S. P. Franklin, On compactness and projection, Internationale Spezialtagung für Erweiterungs-theorie topologischer Strukturen und deren Anwendunge, Berlin, 1967, pp. 77-79.
- S. P. Franklin, Spaces in which sequences suffice, Fund. Math. 57 (1965), 107–115. MR 180954, DOI 10.4064/fm-57-1-107-115
- S. P. Franklin, Natural covers, Compositio Math. 21 (1969), 253–261. MR 250252
- Douglas Harris, Transfinite metrics, sequences and topological properties, Fund. Math. 73 (1971/72), no. 2, 137–142. MR 301709, DOI 10.4064/fm-73-2-137-142
- Horst Herrlich, Quotienten geordneter Räume und Folgenkonvergenz, Fund. Math. 61 (1967), 79–81 (German). MR 221476, DOI 10.4064/fm-61-1-79-81
- R. E. Hodel and J. E. Vaughan, A note on $[{\mathfrak {a}},{\mathfrak {b}}]$-compactness, General Topology and Appl. 4 (1974), 179–189. MR 341402 N. Howes, Well-ordered sequences, Dissertation, Texas Christian University, Forth Worth, Tex., 1968. —, Ordered coverings and their relationship to some unsolved problems in topology, Proc. Washington State University Conference on General Topology, 1970, pp. 60-68.
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- D. C. Kent, Spaces in which well ordered nets suffice, Proc. Washington State Univ. Conf. on General Topology (Pullman, Wash., 1970) Washington State University, Department of Mathematics, Pi Mu Epsilon, Pullman, Wash., 1970, pp. 87–101. MR 0267517
- N. Noble, Products with closed projections. II, Trans. Amer. Math. Soc. 160 (1971), 169–183. MR 283749, DOI 10.1090/S0002-9947-1971-0283749-X
- Paul R. Meyer, Sequential space methods in general topological spaces, Colloq. Math. 22 (1971), 223–228. MR 278258, DOI 10.4064/cm-22-2-223-228
- S. Mrówka, On function spaces, Fund. Math. 45 (1958), 273–282. MR 98312, DOI 10.4064/fm-45-1-283-291
- J. E. Vaughan, Product spaces with compactness-like properties, Duke Math. J. 39 (1972), 611–617. MR 313985 —, Some properties related to $[\mathfrak {a},\mathfrak {b}]$-compactness, Fund. Math. (to appear).
- Karel Wichterle, On ${\mathfrak {B}}$-convergence spaces, Czechoslovak Math. J. 18(93) (1968), 569–588 (English, with Russian summary). MR 240771
- Irving Glicksberg, Stone-Čech compactifications of products, Trans. Amer. Math. Soc. 90 (1959), 369–382. MR 105667, DOI 10.1090/S0002-9947-1959-0105667-4
- R. M. Stephenson Jr. and J. E. Vaughan, Products of initially $m$-compact spaces, Trans. Amer. Math. Soc. 196 (1974), 177–189. MR 425898, DOI 10.1090/S0002-9947-1974-0425898-1
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 469-476
- MSC: Primary 54A20; Secondary 54D55
- DOI: https://doi.org/10.1090/S0002-9939-1975-0370462-2
- MathSciNet review: 0370462