The Baire order of the functions continuous almost everywhere
HTML articles powered by AMS MathViewer
- by R. Daniel Mauldin
- Proc. Amer. Math. Soc. 51 (1975), 371-377
- DOI: https://doi.org/10.1090/S0002-9939-1975-0372128-1
- PDF | Request permission
Abstract:
Let $S$ be a complete and separable metric space and $\mu$ a $\sigma$-finite, complete Borel measure on $S$ with $\mu (S) > 0$. Let $\Phi$ be the family of all real-valued functions defined on $S$ whose set of points of discontinuity is of $\mu$-measure 0. Let ${B_\alpha }(\Phi )$ be the functions of Baire’s class $\alpha$ generated by $\Phi$. It is shown that ${B_1}(\Phi ) = {B_2}(\Phi )$ if and only if $\mu$ is a purely atomic measure whose set of atoms forms a scattered subset of $S$ and that if ${B_1}(\Phi ) \ne {B_2}(\Phi )$, then the Baire order of $\Phi$ is ${\omega _1}$; in other words, if $0 \leq \alpha < {\omega _1}$, then ${B_\alpha }(\Phi ) \ne {B_{\alpha + 1}}(\Phi )$. This answers a generalized version of a problem raised by Sierpinski and Felsztyn. An example is given of a normal space with Borel order 2 and Baire order ${\omega _1}$.References
- K. Kuratowski, Topology. Vol. I, Academic Press, New York-London; Państwowe Wydawnictwo Naukowe [Polish Scientific Publishers], Warsaw, 1966. New edition, revised and augmented; Translated from the French by J. Jaworowski. MR 0217751
- R. Daniel Mauldin, $\sigma$-ideals and related Baire systems, Fund. Math. 71 (1971), no. 2, 171–177. MR 293027, DOI 10.4064/fm-71-2-171-177
- R. Daniel Mauldin, Some examples of $\sigma$-ideals and related Baire systems, Fund. Math. 71 (1971), no. 2, 179–184. MR 293028, DOI 10.4064/fm-71-2-179-184
- R. D. Mauldin, The Baire order of the functions continuous almost everywhere, Proc. Amer. Math. Soc. 41 (1973), 535–540. MR 323966, DOI 10.1090/S0002-9939-1973-0323966-0 W. Sierpinski and T. Felsztyn, Probleme 10, Fund. Math. 1 (1920), 224.
- E. Michael, The product of a normal space and a metric space need not be normal, Bull. Amer. Math. Soc. 69 (1963), 375–376. MR 152985, DOI 10.1090/S0002-9904-1963-10931-3
- Stephen Willard, Some examples in the theory of Borel sets, Fund. Math. 71 (1971), no. 3, 187–191. MR 295279, DOI 10.4064/fm-71-3-187-191
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 371-377
- MSC: Primary 26A21
- DOI: https://doi.org/10.1090/S0002-9939-1975-0372128-1
- MathSciNet review: 0372128