On ergodic sequences of measures
HTML articles powered by AMS MathViewer
- by J. R. Blum and R. Cogburn
- Proc. Amer. Math. Soc. 51 (1975), 359-365
- DOI: https://doi.org/10.1090/S0002-9939-1975-0372529-1
- PDF | Request permission
Abstract:
Let $Z$ be the group of integers and $\bar Z$ its Bohr compactification. A sequence of probability measures $\{ {\mu _n},n = 1,2, \ldots \}$ defined on $Z$ is said to be ergodic provided ${\mu _n}$ converges weakly to $\bar \mu$, the Haar measure on $\bar Z$. Let ${A_n} \subset Z,n = 1,2, \ldots$ and define ${\mu _n}$ by ${\mu _n}(B) = |{A_n} \cap B|/|{A_n}|$ where $|B|$ is the cardinality of $B$. Then it is easy to show that if $|{A_n} \cap {A_n} + k|/|{A_n}| \to 1$ for every $k \in Z$, then ${\mu _n}$ is ergodic. Let $0 \leq {p_k} \leq 1$. In this paper we construct (random) sequences $\{ {\mu _n}\}$ which are ergodic, and such that $\lim (|{A_n} \cap {A_n} + k|/|{A_n}|) = {p_k}$, for every $k \in Z$.References
- Julius Blum and Bennett Eisenberg, Generalized summing sequences and the mean ergodic theorem, Proc. Amer. Math. Soc. 42 (1974), 423–429. MR 330412, DOI 10.1090/S0002-9939-1974-0330412-0
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496 H. Niederreiter, On a paper of Blum, Eisenberg and Hahn concerning ergodic theory and the distribution of sequences in the Bohr group, Acta. Sci. Math. (to appear).
- Herbert Robbins, On the equidistribution of sums of independent random variables, Proc. Amer. Math. Soc. 4 (1953), 786–799. MR 56869, DOI 10.1090/S0002-9939-1953-0056869-7
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 51 (1975), 359-365
- MSC: Primary 43A05; Secondary 22D40
- DOI: https://doi.org/10.1090/S0002-9939-1975-0372529-1
- MathSciNet review: 0372529