ON ERGODIC SEQUENCES OF MEASURES

J. R. BLUM¹ AND R. COGBURN

ABSTRACT. Let Z be the group of integers and \tilde{Z} its Bohr compactification. A sequence of probability measures $\{\mu_n, n = 1, 2, \ldots\}$ defined on Z is said to be ergodic provided μ_n converges weakly to μ, the Haar measure on \tilde{Z}. Let $A_n \subset Z$, $n = 1, 2, \ldots$, and define μ_n by $\mu_n(B) = |A_n \cap B|/|A_n|$ where $|B|$ is the cardinality of B. Then it is easy to show that if $|A_n \cap A_n + k|/|A_n| \to 1$ for every $k \in Z$, then μ_n is ergodic. Let $0 \leq p_k \leq 1$. In this paper we construct (random) sequences $\{\mu_n\}$ which are ergodic, and such that $\lim(|A_n \cap A_n + k|/|A_n|) = p_k$, for every $k \in Z$.

1. Introduction. Let G be a locally compact abelian (l.c.a.) group. Let $\{\mu_n, n = 1, 2, \ldots\}$ be a sequence of probability measures defined on the Borel sets of G. We shall say that such a sequence is ergodic provided μ_n converges weakly to μ, where μ is Haar measure on the Bohr compactification of G. The reason for this terminology is that ergodicity of such a sequence is necessary and sufficient for the generalized mean ergodic theorem to hold: let $\{U_g, g \in G\}$ be any strongly continuous unitary representation G on a Hilbert space H. We say that the generalized mean ergodic theorem holds with respect to the sequence $\{\mu_n\}$ provided $\lim_{n \to \infty} \int_G U_g/\mu_n (dg) = Pf$ strongly, for every $f \in H$, where P is the projection of H on the space $\{f | U_g f = f, g \in G\}$.

As mentioned above and shown in [1], the generalized mean ergodic theorem holds for a sequence $\{\mu_n\}$ if and only if the sequence is ergodic.

Received by the editors April 25, 1974.
¹Research supported by NSF Grant GB-25736.
only if G is σ-compact. (See, e.g., [2].) That the above condition is not necessary was shown in [1].

Now let $G = Z$, the group of integers, and let $\{k_j, j = 1, 2, \ldots\}$ be a sequence of positive integers. Let $A_n = \{k_1, \ldots, k_n\}$ and define μ_n as above by $\mu_n(B) = |A_n \cap B|/|A_n|$, where $|A|$ is the cardinality of A. Clearly each μ_n may be thought of as a measure on \bar{Z}, the Bohr compactification of Z, and it follows from the Levy continuity theorem that μ_n is ergodic if and only if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{j=1}^{n} e^{2\pi i k_j \alpha} = 0 \quad \text{for } 0 < \alpha < 1. \quad (1)$$

From the criterion mentioned above it follows that such sequences will have this property provided $|A_n \cap A_n + k|/|A_n| \to 1$ for every integer k, where $A_n + k$ is A_n translated by k. In a personal communication to one of the authors, Niederreiter [3] proved that given ρ, with $0 \leq \rho \leq 1$, and a positive integer k, there exists (in fact, he constructed it) a sequence $\{k_j\}$ such that

$$\lim_{n \to \infty} \frac{|A_n \cap A_n + k|}{|A_n|} = \rho,$$

and such that the corresponding measures $\{\mu_n\}$ are ergodic. In this note we prove that given ρ_k with $0 \leq \rho_k \leq 1$, there exist (uncountably many) random sequences $\{k_j\}$ such that

(a) the corresponding sequences of measures are ergodic, and
(b) for every integer $k \neq 0$ we have

$$\lim_{n \to \infty} \frac{|A_n \cap A_n + k|}{|A_n|} = \rho_k.$$

In fact we show that (a) and (b) are true on a set of probability one.

As mentioned above, what must be shown is that (1) holds for all α.

For the kind of sequences we construct it was shown by Robbins [4] that this holds for each α on a set of probability one, and the problem is to construct a single set of probability one such that the limiting relation holds for all α simultaneously. We also consider this problem for the group of reals.

2. The main result. Let X_1, X_2, \ldots be a sequence of independent, identically distributed random variables with characteristic function

$$\phi(\alpha) = E e^{i\alpha X_1}.$$

Let $S_n = X_1 + \cdots + X_n$ and

$$T_n(\alpha) = \frac{1}{n} \sum_{k=1}^{n} e^{i\alpha S_k}.$$
Theorem. If \(\phi(\alpha) \neq 1 \) for \(\beta \leq \alpha \leq \gamma \) and if \(E(X_1) \) is finite, then \(\sup_{\beta \leq \alpha \leq \gamma} |T_n(\alpha)| \to 0 \) almost surely as \(n \to \infty \).

Proof. It is shown in the Lemma below that \(\sup_{\beta \leq \alpha \leq \gamma} E|T_n(\alpha)|^4 = O(n^{-2}) \). Now let \(k \) be integer valued and set

\[
A_n = \left[\max_{\beta \leq k/n^{9/7} \leq \gamma} |T_n(k/n^{9/7})| \leq 1/n^{1/7} \right].
\]

Then, using Boole's and Chebychev's inequalities and the Lemma,

\[
P(A_n^c) \leq \sum_{k: \beta \leq k/n^{9/7} \leq \gamma} P\left(\left| T_n\left(\frac{k}{n^{9/7}}\right) \right| ^2 \geq \frac{1}{n^{2/7}} \right)
\]

\[
= \sum_{k: \beta \leq k/n^{9/7} \leq \gamma} O(n^{-10/7}) = O(n^{-1/7}).
\]

Also

\[
\sup_{\alpha} \left| \frac{d}{d\alpha} T_n(\alpha) \right| \leq \frac{1}{n} \sum_{k=1}^{n} |S_k|
\]

and, letting \(\mu = E|X_j| \),

\[
E|S_k| \leq \sum_{j=1}^{k} E|X_j| = k\mu.
\]

Let

\[
B_n = \left[\sup_{\alpha} \left| \frac{d}{d\alpha} T_n(\alpha) \right| \leq n^{8/7} \right].
\]

By Markov's inequality

\[
P(B_n^c) \leq \frac{1}{n^{8/7}} E\left(\frac{1}{n} \sum_{k=1}^{n} |S_k| \right) \leq \frac{O(n^2)}{n^{15/7}} = O(n^{-1/7}).
\]

On \(A_n B_n \) we have

\[
\sup_{\beta \leq \alpha \leq \gamma} |T_n(\alpha)| \leq \frac{1}{n^{1/7}} + \frac{n^{8/7}}{2n^{9/7}} = O(n^{-1/7}),
\]

while \(P(A_n B_n^c) = O(n^{-1/7}) \) from the above estimates.

The proof is completed by using the Borel strong law of large numbers argument: for the subsequence \(\{n^{8}\} \),

\[
\sum_{n} P(A_n^c B_n^c) = \sum O(n^{-8/7}) < \infty
\]

and so \(\sup_{\beta \leq \alpha \leq \gamma} |T_{n,8}(\alpha)| \to 0 \) almost surely.
Now for any m, there exists an n such that $n^8 \leq m < (n+1)^8$, and
\[
|(|T_m(\alpha)| - |T_n(\alpha)|)| \leq |T_m(\alpha) - T_n(\alpha)|
\]
\[
= \left| \frac{1}{m} \sum_{k=n^8+1}^{m} e^{iaS_k} - \left(\frac{1}{n^8} - \frac{1}{m} \right) \sum_{k=1}^{n^8} e^{iaS_k} \right|
\]
\[
\leq 2 \frac{m-n^8}{m} = O\left(\frac{1}{m^{1/8}} \right)
\]
uniformly in α. The Theorem follows.

In the Lemma below we have occasion to use the relation valid for any complex a and b with $|a| \leq 1$ and $a \neq 1$:

\[
(*) \quad \left| \sum_{j=1}^{\nu} a^j b \right| = \left| \frac{a - a^{\nu+1}}{1 - a} b \right| \leq \frac{2|b|}{|1 - a|} = \frac{2|b|}{|1 - \bar{a}|}.
\]

We also use without further comment the fact that, since the X_k's are independent and identically distributed, for any $k > j$,
\[
E e^{ia(S_k-S_j)} = \phi(\alpha)^{k-j}
\]
and the fact that $\phi(-\alpha) = \overline{\phi(\alpha)}$ and $|\phi(\alpha)| \leq 1$.

Lemma. If $\phi(\alpha) \neq 1$ for $\beta \leq \alpha \leq \gamma$ then
\[
\sup_{\beta \leq \alpha \leq \gamma} \frac{E|T_n(\alpha)|^4}{O(1/n^2)} = \frac{1}{n^2}.
\]

Proof. First observe that
\[
E|T_n(\alpha)|^4 = E\left(T_n(\alpha)^2 \right)^2 = \frac{1}{n^4} \sum_{j,k,l,m=1}^{n} E e^{ia(S_j+S_k-S_l-S_m)}
\]
\[
= \frac{1}{n^4} \left(\sum_{\nu} + \sum_{2} + \sum_{3} + \sum_{4} \right)
\]
where
\[
\sum_{\nu}(\alpha) = \sum_{j,k,l,m=1; \{j,k,l,m\}=\nu}^{n} E e^{ia(S_j+S_k-S_l-S_m)}
\]
The modulus of each term in the sum for \sum_{ν} is at most one, so $|\sum_{1}| = O(n)$ and $|\sum_{2}| = O(n^2)$. It is best to break \sum_{3} into two sums, \sum_{3}' and \sum_{3}'', where \sum_{3}' consists of those terms of \sum_{3} which for $j = k$ or $l = m$ and \sum_{3}'' consists of those
terms of \(\Sigma_3\) for which \(|j, k| \cap |l, m| = 1\). Then

\[
|\Sigma_3'(\alpha)| = 2 \left| \text{Re} \left(\sum_{j \neq k \neq l} E e^{i\alpha(2S_j - S_k - S_l)} \right) \right|
\]

\[
= 4 \left| \text{Re} \left(\sum_{j > k > l} \left(E e^{i\alpha(2S_j - S_k - S_l)} + E e^{i\alpha(2S_k - S_j - S_l)} + E e^{i\alpha(2S_l - S_j - S_k)} \right) \right) \right|
\]

\[
\leq \frac{8}{|1 - \phi(a)|} \left(\sum_{j > k} \phi(2\alpha)^{i-j-k} + \sum_{j > k} \overline{\phi(a)}^{i-j-k} + \sum_{k > l} \phi(2\alpha)^{k-l} \right)
\]

\[
= O(n^2)/|1 - \phi(a)|.
\]

where the inequality uses (*).

Similarly, using (*) in the last equality,

\[
|\Sigma_3''(\alpha)| = 4 \left| \text{Re} \left(\sum_{j > k} \phi(\alpha)^{i-j-k} \right) \right| = O(n^2)/|1 - \phi(a)|.
\]

To estimate \(\Sigma_4\) we will first write it in terms of ordered summation indices, \(j > k > l > m\). There are then six types of terms according to the position of the two positive signs among \(\pm S_j \pm S_k \pm S_l \pm S_m\). These can be coalesced into three types of terms by adding conjugates, to give

\[
|\Sigma_4(\alpha)| = 8 \left| \text{Re} \left(\sum_{j > k > l > m} \left(E e^{i\alpha(S_j + S_k - S_l - S_m)} + E e^{i\alpha(S_j - S_k + S_l - S_m)} \right) \right) \right|
\]

\[
= 8 \left| \text{Re} \left(\sum_{j > k > l > m} \left(\phi(\alpha)^{i-j-k} \phi(2\alpha)^{k-l} \phi(\alpha)^{l-m} + \phi(\alpha)^{i-j-k+l-m} \right) \right) \right|
\]

\[
\leq \frac{16}{|1 - \phi(a)|} \left(\sum_{k > l > m} \phi(2\alpha)^{k-l} \phi(\alpha)^{l-m} \right) + 2n \left| \sum_{l > m} \phi(\alpha)^{l-m} \right|
\]

\[
= O(n^2)/|1 - \phi(a)|^2.
\]

Here (*) is used twice, at the inequality and the last equality.

Combining these estimates,
\[
\operatorname{sup}_{\beta \leq \gamma} \frac{E|T_n(\alpha)|^4}{n^4} = \frac{O(n^2)}{n^4} \operatorname{sup}_{\beta \leq \gamma} \frac{1}{|1 - \phi(\alpha)|^2}.
\]

The hypothesis of the Lemma, together with the continuity of \(\phi \), imply that the supremum is finite, and the assertion is proved.

Let \(\mathcal{L}(d) \), for \(d > 0 \), denote the lattice \(\{0, \pm d, \pm 2d, \ldots\} \). We will say that \(X \) is an \(\mathcal{L}(d) \) lattice variable if \(P[X \in \mathcal{L}(d)] = 1 \) but there is no \(d' > d \) such that \(P[X \in \mathcal{L}(d')] = 1 \). It is well known that \(X \) is an \(\mathcal{L}(d) \) lattice variable if and only if \(\phi(\alpha) \neq 1 \) for \(0 < \alpha < 2\pi/d \) and \(\phi(2\pi/d) = 1 \).

Corollary 1. If \(X_1 \) is an \(\mathcal{L}(1) \) lattice variable, then there exists a null set \(N \) not depending on \(\alpha \) such that, except on \(N \), \(T_n(\alpha) \rightarrow 0 \) as \(n \rightarrow \infty \) for every \(\alpha \neq 0 \) (mod \(2\pi \)).

Proof. In this case the \(T_n(\alpha) \) as well as \(\phi(\alpha) \) are periodic of period \(2\pi \). By the Theorem, for any \(k > 0 \), \(\operatorname{sup}_{1/k \leq \alpha \leq 2\pi k - 1/k} \left| T_n(\alpha) \right| \rightarrow 0 \) as \(n \rightarrow \infty \) except on a null set \(N_k \).

Evidently we can take \(N = \bigcup_{k=1}^\infty N_k \) to be the set specified in the corollary.

We will say that \(X \) is a nonlattice variable if \(X \) is not an \(\mathcal{L}(d) \) lattice variable for any \(d > 0 \) and if \(P[X \neq 0] > 0 \). This is the case if and only if \(\phi(\alpha) \neq 1 \) for any \(\alpha \neq 0 \). Then in the same way as for the first corollary we have the following result.

Corollary 2. If \(X_1 \) is a nonlattice variable, then there exists a null set \(N \) not depending on \(\alpha \) such that, except on \(N \), \(T_n(\alpha) \rightarrow 0 \) as \(n \rightarrow \infty \) for every \(\alpha \neq 0 \).

Let
\[
r_n(\delta) = \frac{||S_1, \ldots, S_n|| - \delta}{||S_1, \ldots, S_n||},
\]
We will consider only the case that \(X_1 > 0 \) so \(||S_1, \ldots, S_n|| = n \).

Lattice case. Let \(X_1 \) be an \(\mathcal{L}(1) \) lattice variable. Then
\[
r_n(1) = \frac{1}{n} \sum_{k=2}^n X[X_k = 1] \xrightarrow{a.s.} P[X_1 = 1],
\]
as \(n \rightarrow \infty \).

Continuous case. Let \(X_1 \) be a nonlattice variable. Then
\[
r_n(\delta) = \frac{1}{n} \sum_{k=2}^n X[X_k = \delta \text{ or } X_k + X_{k+1} = \delta \text{ or } \ldots \text{ or } X_k + \ldots + X_n = \delta]
\]
\[
= \frac{1}{n} \sum_{j=0}^{n-2} \sum_{k=2}^{n-j} X_{A_{k,j}}
\]
where

\[A_{k,j} = [X_k + \cdots + X_{k+j} = \delta]. \]

Let \(A_k = \bigcup_{j=0}^{\infty} A_{k,j} \) and let \(p_j = P(A_{1,j}) \) and \(p = P(A_1) \). Then by the ergodic theorem

\[
\frac{1}{n} \sum_{k=1}^{n} X_{A_{k,j}} \overset{a.s.}{\longrightarrow} p_j, \quad \frac{1}{n} \sum_{k=1}^{n} X_{A_k} \overset{a.s.}{\longrightarrow} p
\]

as \(n \to \infty \). But we have \(r_n(\delta) \leq n^{-1} \sum_{k=2}^{n} X_{A_k} \) so \(\lim \sup r_n(\delta) \leq p \). On the other hand, by Fatou's lemma,

\[
\liminf r_n(\delta) \geq \sum_{j=0}^{\infty} \liminf \left(\frac{1}{n} \sum_{k=2}^{n-j} X_{A_{k,j}} \right) = \sum_{j=0}^{\infty} p_j = p
\]

since \(A_1 = \bigcup_j A_{1,j} \) and the sets in the union are disjoint. Thus \(r_n(\delta) \overset{a.s.}{\longrightarrow} p \), as \(n \to \infty \). Clearly \(p = 0 \) except for at most a countable set of \(\delta \) values.

3. Concluding remarks. Now let \(X_1, X_2, \ldots \) be \(\mathcal{L}(1) \) random variables. Then it follows from the results in §2 that if we define \(k_j = X_1 + \cdots + X_j \) the corresponding sequences of measures satisfy conditions (a) and (b) of §1 with probability one.

The results also apply to the case when \(G = \mathbb{R} \), the additive group of real numbers. For if \(X_1, X_2, \ldots \) are positive nonlattice random variables we can apply Corollary 2 to show that \(\lim_n T_n(\alpha) = 0 \) for all \(\alpha \neq 0 \) with probability one. Thus if \(k_j = X_1 + \cdots + X_j \), and if \(Y(t), t \geq 0 \) is a stationary stochastic process we see that the mean ergodic theorem applies to the averages \(n^{-1} \sum_{j=1}^{n} Y(k_j) \) provided the process is second order.

REFERENCES

