REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OKLAHOMA 73069

A CHARACTERIZATION OF THE KERNEL OF A CLOSED SET

MARIYLN BREEN

ABSTRACT. Let S be a closed subset of some linear topological space such that $\text{int} \ker S \neq \emptyset$ and $\ker S \neq S$. Let \mathcal{C} denote the collection of all maximal convex subsets of S and, for any fixed $k \geq 1$, let $\mathfrak{M} = \{A_1 \cup \cdots \cup A_k : A_1, \ldots, A_k \text{ distinct members of } \mathcal{C}\}$. Then $\mathfrak{M} \neq \emptyset$ and $\bigcap \mathfrak{M} = \ker S$.

If \mathcal{C} is the collection of all maximal convex subsets of some set S, it is easy to show that $\bigcap \mathcal{C} = \ker S$. This paper provides an interesting and perhaps surprising analogue of this well-known result. Throughout the paper, $\text{conv } S$, $\text{int } S$, and $\ker S$ will be used to denote the convex hull, interior, and kernel, respectively, for the set S.

Further, we will make use of these familiar definitions: For points x, y in a set S, we say x sees y via S if and only if the corresponding segment $[x, y]$ lies in S. A subset T of S is said to be a visually independent subset of S if and only if for every x, y in T, $x \neq y$, x does not see y via S.

Received by the editors April 1, 1974 and, in revised form, June 7, 1974.

AMS (MOS) subject classifications (1970). Primary 52A05.

Key words and phrases. Convex kernel, maximal convex subsets, unions of convex sets.

Copyright © 1975. American Mathematical Society
Theorem 1. Let S be a closed subset of some linear topological space such that $\text{int} \ker S \neq \emptyset$ and $\ker S \neq S$. Let \mathcal{C} denote the collection of all maximal convex subsets of S and, for any fixed $k \geq 1$, let $\mathcal{M}_k = \{A_1 \cup \cdots \cup A_k : A_1, \ldots, A_k \text{ distinct members of } \mathcal{C}\}$. Then $\mathcal{M} \neq \emptyset$ and $\bigcap \mathcal{M} = \ker S$.

Proof. It is clear that $\ker S \subseteq \bigcap \mathcal{M}$, since $\ker S$ lies in every member of \mathcal{C}. To prove the reverse inclusion, we show that if $x \in S$ and $x \notin \ker S$, there are infinitely many distinct members of \mathcal{C} which fail to contain x.

Since $x \notin \ker S$, we may select p in S with $[p, x] \notin S$. Also, select z in $\text{int} \ker S \neq \emptyset$. Clearly z, p, x are not collinear. Because S is closed, $[p, z] \subseteq S$ and $[p, x] \notin S$, there is some point w on $[z, x)$ such that p sees w via S and p sees no point of $(w, x]$ via S. Also, since $z \in \text{int} \ker S$, w lies in the open interval (z, x), and $\text{conv} \{p, z, w\} \subseteq S$. Similarly, there is a point y on (z, p) such that x sees y via S, x sees no point of $(y, p]$ via S, and $\text{conv} \{x, z, y\} \subseteq S$. Let q denote the point of intersection of (p, w) with (x, y). There are two cases to consider.

Case 1. Assume for the moment that no point of $[p, q)$ sees any point of $[x, q)$ via S. Consider the family of segments $[a, b]$ supporting $\text{conv} \{p, q, x\}$ at q, with a on $[p, y)$ and b on (w, x). Each of these segments lies in a maximal convex subset of S not containing x, and no two segments lie in the same maximal convex subset. Hence there are infinitely many maximal convex subsets of S not containing x, and $x \notin \bigcap \mathcal{M}$, the desired result.

Case 2. If some point of $[p, q)$ sees some point of $[x, q)$ via S, select points p_2 and x_2 having this property, with p_2 on $[p, q)$ and x_2 on (x, q). Clearly $p_2 \neq p$ and $x_2 \neq x$, and we may select p_2, x_2 so that no point of $[p, p_2)$ sees any point of (x, x_2) via S. Repeat an earlier argument to find points w_2 on $[x_2, q)$, y_2 on $[p_2, q)$ such that p_2 sees w_2 via S and p_2 sees no point of $(w_2, x]$ via S, x_2 sees y_2 via S and x_2 sees no point of $(y_2, p]$ via S.

Without loss of generality, we assume that $p_2 \neq y_2$ (for otherwise the following argument may be suitably adapted using p, p_2, x_2 in place of p_2, q_2, x_2, respectively). Let q_2 denote the point of intersection of $[p_2, w_2]$ with $[x_2, y_2]$. It is clear that x sees no point on $[p_2, q_2] \cup (x_2, q_2)$. In case no point of $[p_2, q_2)$ sees any point of $[x_2, q_2]$ via S, we may repeat the argument of Case 1 to obtain an infinite collection of segments supporting $\text{conv} \{p_2, q_2, x_2\}$ at q_2, each of which lies in a maximal convex subset of S not containing x, and no two of which lie in the same maximal convex subset of S, finishing the proof.
Otherwise, some point of \([p_2, q_2]\) sees some point of \([x_2, q_2]\) via \(S\), and we repeat the previous argument to obtain points \(p_3, x_3, q_3\). Furthermore, \(x\) cannot see \(x_3\) via \(S\). Continuing inductively, if for some \(n\), no point of \([p_n, q_n]\) sees any point of \([x_n, q_n]\) via \(S\), then the argument of Case 1 yields the desired result. If no such \(n\) exists, then the infinite set of points \(\{x_{2n+1} : n \geq 1\}\) is a visually independent subset of \(S\), no point of which sees \(x\) via \(S\). To each point \(x_{2n+1}\) we may associate a distinct maximal convex subset of \(S\) not containing \(x\). Therefore, \(x \notin \bigcap \mathcal{M}\). This completes Case 2 and the proof of the Theorem.

To see that the full hypothesis of Theorem 1 is required, consider the following example.

Example. For \(k \geq 2\), let \(x_1, \ldots, x_k\) denote \(k\) distinct points of some line \(L\), with \(x_1 < x_2 < \cdots < x_k\), and let \(y\) be a point not on \(L\). If \(S = \text{int}(\text{conv}\{x_1, x_k, y\} \cup \{x_1, \ldots, x_k\}\), then \(S\) is not closed, \(S\) has exactly \(k\) maximal convex subsets, and the corresponding set \(\bigcap \mathcal{M}\) is all of \(S\).

Similarly, if \(S\) is any collection of \(k \geq 2\) distinct lines intersecting in a common point, then \(\text{int}(\ker S) = \emptyset\), \(S\) has exactly \(k\) maximal convex subsets, and \(\bigcap \mathcal{M} = S\).