DISK-LIKE PRODUCTS OF \(\lambda \) CONNECTED CONTINUA. I

CHARLES L. HAGOPIAN

ABSTRACT. A continuum \(X \) is \(\lambda \) connected if each two of its points can be joined by a hereditarily decomposable subcontinuum of \(X \). We prove that continua \(X \) and \(Y \) are atriodic and hereditarily unicoherent when the topological product \(X \times Y \) is disk-like. From this result and a theorem of R. H. Bing's it follows that \(\lambda \) connected continua \(X \) and \(Y \) are arc-like if and only if \(X \times Y \) is disk-like.

We call a nondegenerate metric space that is both compact and connected a continuum. Let \(X \) and \(Y \) be continua and let \(f \) be a continuous function of \(X \) onto \(Y \). If \(\epsilon \) is a positive number such that for each point \(p \) of \(Y \), the diameter of \(f^{-1}(p) \) is less than \(\epsilon \), then \(f \) is said to be an \(\epsilon \)-map of \(X \) onto \(Y \).

A continuum \(X \) is arc-like if for each \(\epsilon > 0 \) there is an \(\epsilon \)-map of \(X \) onto an arc. Arc-like continua are sometimes called snake-like or chainable. This property can be described in terms of simple chains of small open sets that cover a space [1].

A continuum \(X \) is disk-like if for each \(\epsilon > 0 \) there is an \(\epsilon \)-map of \(X \) onto a disk (2-cell).

A continuum \(T \) is called a triod if it contains a subcontinuum \(Z \) such that \(T - Z \) is the union of three nonempty disjoint open sets. When a continuum does not contain a triod, it is said to be atriodic.

A continuum is decomposable if it is the union of two proper subcontinua. A continuum is unicoherent provided that if it is the union of two subcontinua \(E \) and \(F \), then \(E \cap F \) is connected. A continuum is called hereditarily decomposable (hereditarily unicoherent) if all of its subcontinua are decomposable (unicoherent).

According to a theorem of R. H. Bing [1, Theorem 11], every atriodic, hereditarily decomposable, hereditarily unicoherent continuum is arc-like.
For any two metric spaces \((X, \psi)\) and \((Y, \phi)\), we shall always assume that the distance between two points \(p_1 = (x_1, y_1)\) and \(p_2 = (x_2, y_2)\) of the topological product \(X \times Y\) is defined by
\[
\rho(p_1, p_2) = ((\psi(x_1, x_2))^2 + (\phi(y_1, y_2))^2)^{1/2}.
\]

Throughout this paper the closure and the boundary of a given set \(Z\) are denoted by \(\text{Cl} Z\) and \(\text{Bd} Z\) respectively.

Theorem 1. Suppose that \(X\) and \(Y\) are continua and that the topological product \(X \times Y\) is disk-like. Then \(X\) is atriodic and hereditarily unicoherent.

Proof. Let \(\psi\) and \(\phi\) be distance functions for \(X\) and \(Y\), respectively, and let \(D\) be a disk in a 2-sphere \(S^2\).

Assume that \(X\) contains a triod \(T\). It follows that there exist distinct continua \(B_1, B_2, B_3,\) and \(Z\) such that \(T = \bigcup_{i=1}^3 B_i\) and \(Z = B_i \cap B_j\) for each \(i\) and \(j\) \((1 \leq i < j \leq 3)\). For \(i = 1, 2,\) and \(3\), let \(p_i\) be a point of \(B_i - \bigcup_{j \neq i} B_j\). Define \(\{y_i\mid 1 \leq i \leq 6\}\) to be a set consisting of six distinct points of \(Y\). Let \(e\) be the minimum of \(\{|\phi(y_i, y_j)|\mid 1 \leq i < j \leq 6\}\) and \(\{|\psi(p_i, B_j \cup B_k)|\mid 1 \leq i \leq 3, 1 \leq j < k \leq 3,\) and \(j \neq i \neq k\)\). Let \(f\) be an \(e\)-map of \(X \times Y\) onto \(D\).

There exist disjoint disks \(Q_1, Q_2,\) and \(Q_3\) in \(S^2\) such that for \(i = 1, 2,\) and \(3, Q_i\) contains \(f(\{p_i\} \times Y)\) and misses \(f((B_j \cup B_k) \times \{y_1\})\) when \(1 \leq j < k \leq 3\) and \(j \neq i \neq k\). By staying close to the continuum \(f((B_1 \cup B_2) \times \{y_1\})\) we define an arc-segment \(A_1\) in \(S^2 - \bigcup_{i=1}^3 Q_i\) such that each component of \(Q_1 \cup Q_2\) contains an endpoint of \(A_1\) and \(\text{Cl} A_1 \cap (\bigcup_{i=2}^6 f(T \times \{y_i\})\) = \(\emptyset\). Define \(A_2\) to be an arc-segment in \(S^2 - \bigcup_{i=1}^3 Q_i\) that stays close to \(f((B_3 \cup B_j) \times \{y_1\})\) such that \(\text{Cl} A_2\) meets \(Q_2\) and \(Q_3\) and misses \(\text{Cl} A_1 \cup \bigcup_{i=3}^6 f(T \times \{y_i\})\). Let \(A_3\) be an arc-segment in \(S^2 - \bigcup_{i=1}^3 Q_i\) near \(f((B_1 \cup B_3) \times \{y_4\})\) such that \(\text{Cl} A_3\) meets \(Q_1\) and \(Q_3\) and misses \(\text{Cl}(A_1 \cup A_2) \cup \bigcup_{i=4}^6 f(T \times \{y_i\})\).

Note that \(\bigcup_{i=1}^3 A_i \cup Q_i\) has exactly two complementary domains in \(S^2\). Hence there exists a complementary domain \(U\) of \(\bigcup_{i=1}^3 A_i \cup Q_i\) in \(S^2\) that contains two elements of \(\{f(Z \times \{y_i\})\mid 4 \leq i \leq 6\}\). Assume without loss of generality that \(f(Z \times \{y_4\})\) and \(f(Z \times \{y_5\})\) are in \(U\). Since \(Z\) is a continuum and \(f(T \times \{y_4, y_5\}) \cap (\bigcup_{i=1}^3 A_i) = \emptyset\), and since for each point \(y\) of \(Y\) and \(i = 1, 2,\) and \(3, f(B_i \times \{y\}) \cap Q_i \neq \emptyset\), it follows that there exist continua \(H\) and \(K\) in \(f(T \times \{y_4\}) \cap \text{Cl} U\) and \(f(T \times \{y_5\}) \cap \text{Cl} U\), respectively, such that for \(i = 1, 2,\) and \(3, H \cap \text{Bd} Q_i \neq \emptyset \neq K \cap \text{Bd} Q_i\). But since \(H\) and \(K\) are disjoint, this is a contradiction [6, Theorem 76, p. 220]. Hence \(X\) is atriodic.
Assume that X is not hereditarily unicoherent. It follows that in X there exist continua E and F and nonempty disjoint closed sets A and B such that $E \cap F = A \cup B$. Define C_1 and C_2 to be open subsets of X such that $A \subset C_1$, $B \subset C_2$, and $C_1 \cap C_1 \cap C_2 = \emptyset$. Define δ to be a positive number less than $\psi(C_1, C_2)$, $\psi(E, F - (C_1 \cup C_2))$ and $\psi(F, E - (C_1 \cup C_2))$.

We first prove that $E \cup F$ is X. To accomplish this we suppose that there is a point x of $X - (E \cup F)$. Let R be a proper subcontinuum of Y. Let v_1 and v_2 be distinct points of R and let v_3 be a point of $Y - R$. Define δ' to be a positive number less than δ, $\psi(x, E \cup F)$, $\phi(v_1, v_2)$, and $\phi(v_3, R)$. Let g be a δ'-map of $X \times Y$ onto D.

Note that the continua $g(X \times \{v_i\})$ and $g(X \times \{v_j\})$ are disjoint for each i and j ($1 \leq i < j \leq 3$). Suppose that for $i = 1, 2,$ and 3, $g((E \cup F) \times \{v_i\})$ does not separate $g(X \times \{v_j\})$ from $g(X \times \{v_k\})$ in S^2 when $1 \leq j < k \leq 3$ and $j \neq i \neq k$. For $i = 1$ and 2, define H_i to be an arc in $S^2 - g((E \cup F) \times \{v_i\})$ that intersects both $g(X \times \{v_j\})$ and $g(X \times \{v_k\})$ ($1 \leq j \leq 2$ and $j \neq i$).

Let z_1 and z_2 be points of A and B respectively. For $i = 1, 2$ and $j = 1, 2$, define M_{ij} to be

$$(g((E \cap C_i) \times \{v_i\}) \cap g((F \cap C_j) \times \{v_j\}) \cup (g(z_i \times R) \cap g((E \cup F) \times \{v_i\})).$$

Note that for $j = 1$ and 2, M_{1j} and M_{2j} are closed disjoint subsets of $g(C_j \times Y) - g((E \cup F) \cap C_j \times Y)$.

There exist mutually exclusive disks K_{11}, K_{12}, K_{21}, and K_{22} in S^2 such that for each i and j, the following conditions are satisfied:

1. The interior of K_{ij} contains M_{ij}.
2. K_{ij} does not intersect $H_i \cup g(((E \cup F) - C_j) \times Y) \cup g(X \times \{v_k, v_3\})$ when $1 \leq k \leq 2$ and $k \neq i$.

Let $E_1, E_2, F_1, F_2, R_1,$ and R_2 be disjoint continua in $S^2 - g(X \times \{v_3\})$ that miss the interior of $\bigcup_{i,j=1}^{2} K_{ij}$ such that for $n = 1$ and 2, E_n is in $g(E \times \{v_n\})$ and meets $\text{Bd} K_{n1}$ and $\text{Bd} K_{n2}$, F_n is in $g(F \times \{v_n\})$ and meets $\text{Bd} K_{n1}$ and $\text{Bd} K_{n2}$, and R_n is in $g(z_n \times R)$ and meets $\text{Bd} K_{n1}$ and $\text{Bd} K_{n2}$.

There exist arc-segments I_n, J_n, I_n, J_n, T_n, and T_2 in $S^2 - (g(X \times \{v_3\})$ $\cup \bigcup_{i,j=1}^{2} K_{ij})$ whose closures are disjoint approximating E_1, E_2, F_1, F_2, $R_1,$ and R_2, respectively, such that for $n = 1$ and 2, the following conditions are satisfied:

1. $\text{Cl} I_n$ misses $H_n \cup g((F - (C_1 \cup C_2)) \times Y)$, meets $\text{Bd} K_{n1}$ and $\text{Bd} K_{n2}$, and contains a point e_n of $E_n - g((C_1 \cup C_2) \times \{v_n\})$.
2. $\text{Cl} J_n$ misses $H_n \cup g((E - (C_1 \cup C_2)) \times Y)$, meets $\text{Bd} K_{n1}$ and $\text{Bd} K_{n2}$, and contains a point f_n of $F_n - g((C_1 \cup C_2) \times \{v_n\})$.\]
3. \(\text{Cl} T_n \) misses \(g(((E \cup F) - C_n) \times Y) \) and meets \(\text{Bd} K_{1n} \) and \(\text{Bd} K_{2n} \).

Let \(V \) be the complementary domain of \(\bigcup_{i=1}^2 (L_i \cup T_i \cup \bigcup_{j=1}^2 K_{ij}) \) that contains \(g(X \times \{v_3\}) \). Note that if \(i \) and \(j \) are distinct positive integers less than 3, then the continuum \(g(X \times \{v_i, v_3\}) \cup H_{ij} \cup K_{ij} \cup K_{i2} \cup L_i \cup J_i \) misses \(K_{ij} \cup K_{i2} \cup L_j \cup J_j \). It follows that \(\text{Bd} V \) is a simple closed curve that contains \(T_1 \) and \(T_2 \) [6, Theorem 28, p. 156]. Consequently one of \(L_1, L_2, J_1, \) and \(J_2 \) does not meet \(\text{Bd} V \). Suppose, without loss of generality, that \(L_1 \cap \text{Bd} V = \emptyset \). It follows that \(\bigcup_{i=1}^2 (L_i \cup T_i \cup \bigcup_{j=1}^2 K_{ij}) \) contains a simple closed curve \(L \) that separates \(e_1 \) from \(g(X \times \{v_2\}) \) in \(S^2 \). Let \(u \) be a point of \(E - (C_1 \cup C_2) \) such that \(g(u, v_1) = e_1 \). Since \(g(\{u\} \times Y) \) is a continuum in \(S^2 - L \) that meets \(e_1 \) and \(g(X \times \{v_3\}) \), we have a contradiction. Hence for some integer \(i = 1, 2, \) or 3, the continuum \(g((E \cup F) \times \{v_i\}) \) separates \(g(X \times \{v_j\}) \) from \(g(X \times \{v_k\}) \) in \(S^2 \) when \(1 \leq j < k \leq 3 \) and \(j \neq i \neq k \).

Assume, without loss of generality, that \(g((E \cup F) \times \{v_2\}) \) separates \(g(X \times \{v_1\}) \) from \(g(X \times \{v_3\}) \) in \(S^2 \). This assumption contradicts the fact that \(g(\{x\} \times Y) \) is a continuum in \(S^2 - g((E \cup F) \times \{v_2\}) \) that meets both \(g(X \times \{v_1\}) \) and \(g(X \times \{v_3\}) \). It follows that \(X = E \cup F \).

Next we let \(h \) be a \(\delta \)-map of \(X \times Y \) onto \(D \). Note that the set \(h(E \times Y) \cap h(F \times Y) \) lies in \(h((C_1 \cup C_2) \times Y) \) and meets both \(h(C_1 \times Y) \) and \(h(C_2 \times Y) \). Thus \(h(E \times Y) \cap h(F \times Y) \) is not connected. But since \(X = E \cup F \) and \(h(X \times Y) = D \), the union of continua \(h(E \times Y) \) and \(h(F \times Y) \) is \(D \), which contradicts the fact that \(D \) is unicoherent [6, Theorem 22, p. 175]. Hence \(X \) is hereditarily unicoherent.

Theorem 2. If \(X \) is a \(\lambda \) connected hereditarily unicoherent continuum, then \(X \) is hereditarily decomposable.

Proof. Assume that \(X \) contains an indecomposable continuum \(I \). Let \(p \) and \(q \) be points of distinct composants of \(I \) [6, Theorem 139, p. 59]. Since \(X \) is \(\lambda \) connected, there exists a subcontinuum \(H \) of \(X \) that contains \(\{p, q\} \) and does not contain \(I \). But since \(p \) and \(q \) belong to different composants of \(I \), the set \(H \cap I \) is not connected, which contradicts the assumption that \(X \) is hereditarily unicoherent. Hence \(X \) is hereditarily decomposable.

Theorem 3. Suppose that \(X \) and \(Y \) are continua, that \(X \) is \(\lambda \) connected, and that \(X \times Y \) is disk-like. Then \(X \) is arc-like.

Proof. By Theorem 1, \(X \) is atriodic and hereditarily unicoherent. Hence \(X \) is hereditarily decomposable (Theorem 2). It follows from Bing's theorem [1, Theorem 11] that \(X \) is arc-like.
Theorem 4. Suppose that X and Y are λ connected continua. Then X and Y are arc-like if and only if $X \times Y$ is disk-like.

Proof. Theorem 3 indicates that this condition is sufficient. To see that it is also necessary we note that if f is an $\varepsilon/2$-map of X onto the unit interval $[0, 1]$ and g is an $\varepsilon/2$-map of Y onto $[0, 1]$, then the function h of $X \times Y$ onto $[0, 1] \times [0, 1]$ defined by $h((x, y)) = (f(x), g(y))$ is an ε-map.

A continuum X is said to have the fixed point property if for each continuous function f of X into itself there is a point x of X such that $f(x) = x$. It is known [3] that every λ connected nonseparating plane continuum has the fixed point property.

Theorem 5. If X and Y are λ connected continua and $X \times Y$ is disk-like, then X, Y, and $X \times Y$ have the fixed point property.

Proof. O. H. Hamilton [5] proved that every arc-like continuum has the fixed point property. In [2] E. Dyer proved that all products of arc-like continua have the fixed point property. Hence the theorem follows from Theorem 4.

For another result involving products of λ connected continua see [4, Theorem 5].

Question 1. If X and Y are continua and $X \times Y$ is disk-like, then must X be arc-like?

Question 2. Does every disk-like continuum have the fixed point property?

An affirmative answer to Question 2 would imply that every nonseparating plane continuum has the fixed point property.

REFERENCES

DEPARTMENT OF MATHEMATICS, CALIFORNIA STATE UNIVERSITY, SACRAMENTO, CALIFORNIA 95819