Hall subgroups and $p$-solvability
HTML articles powered by AMS MathViewer
- by A. Gonçalves and C. Y. Ho
- Proc. Amer. Math. Soc. 52 (1975), 97-98
- DOI: https://doi.org/10.1090/S0002-9939-1975-0372022-6
- PDF | Request permission
Abstract:
Let $G$ be a finite group and let $\pi (G) = \{ p,{q_1}, \ldots ,{q_r}\}$ be the set of all prime divisors of $G$. Suppose there is a $pβ$-Hall subgroup $H$. If there are subgroups $P,{Q_1}, \ldots ,{Q_r}$ such that $P\epsilon {\operatorname {Syl} _p}(G),{Q_i}\epsilon {\operatorname {Syl} _{{q_i}}}(H)$, and ${L_i} = P{Q_i}$ is a subgroup, $i = 1, \ldots ,r$, then $G$ is $p$-solvable. Moreover, if the subgroup $H$ is solvable, then $G$ is solvable too.References
- Walter Feit and John G. Thompson, Solvability of groups of odd order, Pacific J. Math. 13 (1963), 775β1029. MR 166261
- Daniel Gorenstein, Finite groups, Harper & Row, Publishers, New York-London, 1968. MR 0231903
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 97-98
- MSC: Primary 20D10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0372022-6
- MathSciNet review: 0372022