EXTREMALLY DISCONNECTED SETS IN GROUPS

SADAHIRO SAEKI

ABSTRACT. It is shown that every extremally disconnected compact set in a LCA group is an SH-set.

Let G be a locally compact abelian group, and \widehat{G} its Bohr compactification. For a set E in G, the closure of E in \widehat{G} is denoted by \overline{E}.

We call E a set of interpolation if E has no accumulation point in G and if each bounded function on E extends to a continuous almost periodic function on G. Suppose E is such a set. Then it is obvious that \overline{E} is extremally disconnected (i.e., the closure of any relatively open subset of \overline{E} is relatively open in \overline{E}). Moreover, it is known that \overline{E} is a Helson set (Kahane [1]) and also a set of uniqueness (Méla [2]).

In this note we point out the following fact.

Theorem. Suppose that K is an extremally disconnected compact set in G. Then K is an SH-set (i.e., a set of spectral synthesis which is also a Helson set).

Proof. If every point of K has a compact neighborhood (in K) which is an SH-set, then K is a finite union of disjoint SH-sets and is therefore an SH-set.

To force a contradiction, we assume that K contains a point x_0 such that no compact neighborhood of x_0 in K is an SH-set. We shall construct a sequence of disjoint clopen sets $A_1, B_1, A_2, B_2, \ldots$, in K as follows.

First choose any disjoint clopen subsets A_1 and B_1 of K such that $x_0 \notin A_1 \cup B_1$. Suppose $A_1, B_1, \ldots, A_n, B_n$ have been chosen so that $x_0 \notin C_n = A_1 \cup B_1 \cup \cdots \cup A_n \cup B_n$. Then $K \setminus C_n$ is a clopen neighborhood of x_0 in K, which is not an SH-set. Using the characterization of SH-sets given in [3], we can therefore find two disjoint clopen subsets A_{n+1} and B_{n+1} of $K \setminus C_n$ such that $\|f\|_{A(G)} \geq n + 1$ whenever $f \in A(G)$, $f = 1$ on some neighborhood of A_{n+1} in G, and $f = 0$ on some neighborhood of B_{n+1} in G. Obviously we can demand that $x_0 \notin A_{n+1} \cup B_{n+1}$. This completes the induction.

Put $A = \bigcup_{n=1}^{\infty} A_n$ and $B = \bigcup_{n=1}^{\infty} B_n \subset K$, so that A and B are disjoint open subsets of K; hence $\overline{A} \cap B = \emptyset$. Since K is extremally disconnected by hypothesis, \overline{A} is open in K and therefore $\overline{A} \cap \overline{B} = \emptyset$. Consequently there

Received by the editors July 15, 1974.

Key words and phrases. Locally compact abelian group, set of interpolation, Bohr compactification, Helson set, set of synthesis, set of uniqueness.

Copyright © 1975, American Mathematical Society
exists a $g \in A(G)$ such that $g = 1$ on some neighborhood of \overline{A} in G and $g = 0$ on some neighborhood of \overline{B} in G. But then, $\|g\|_{A(G)} \geq n$ for all natural numbers n by the definitions of A and B, which is of course absurd.

This completes the proof.

Corollary. Let E be a finite union of sets of interpolation in G. Then \overline{E} is an SH-set in \overline{G} and $C_0(E) \subset (M_d(\Gamma))^\sim_E$. Here Γ denotes the dual of G.

Proof. This follows from our Theorem and Corollary 5.1 of [4].

Remark. In the Corollary, we cannot conclude that $l^\infty(E) = (M_d(\Gamma))^\sim_E$: an example appears in [5].

REFERENCES