$\Pi _{2}^{1}$ sets and $\Pi _{2}^{1}$ singletons
HTML articles powered by AMS MathViewer
- by Leo Harrington
- Proc. Amer. Math. Soc. 52 (1975), 356-360
- DOI: https://doi.org/10.1090/S0002-9939-1975-0373896-5
- PDF | Request permission
Abstract:
The following are equivalent: (a) every real is constructible; (b) every nonempty $\prod _2^1$ set of reals contains a $\prod _2^1$ singleton. (Implication $({\text {a}}) \Rightarrow ({\text {b}})$ is due solely to H. Friedman.)References
- J. W. Addison, Some consequences of the axiom of constructibility, Fund. Math. 46 (1959), 337–357. MR 124206, DOI 10.4064/fm-46-3-337-357
- J. W. Addison, Separation principles in the hierarchies of classical and effective descriptive set theory, Fund. Math. 46 (1959), 123–135. MR 131357, DOI 10.4064/fm-46-2-123-135
- Ronald Jensen, Definable sets of minimal degree, Mathematical Logic and Foundations of Set Theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp. 122–128. MR 0306002
- Alexander S. Kechris, Measure and category in effective descriptive set theory, Ann. Math. Logic 5 (1972/73), 337–384. MR 369072, DOI 10.1016/0003-4843(73)90012-0
- Richard Mansfield, Perfect subsets of definable sets of real numbers, Pacific J. Math. 35 (1970), 451–457. MR 280380, DOI 10.2140/pjm.1970.35.451
- Hartley Rogers Jr., Theory of recursive functions and effective computability, McGraw-Hill Book Co., New York-Toronto-London, 1967. MR 0224462
- Gerald E. Sacks, Forcing with perfect closed sets, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 331–355. MR 0276079
- J. R. Shoenfield, The problem of predicativity, Essays on the foundations of mathematics, Magnes Press, Hebrew Univ., Jerusalem, 1961, pp. 132–139. MR 0164886
- Joseph R. Shoenfield, Mathematical logic, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1967. MR 0225631
- Jack H. Silver, Measurable cardinals and $\Delta ^{1}_{3}$ well-orderings, Ann. of Math. (2) 94 (1971), 414–446. MR 299469, DOI 10.2307/1970765
- Robert M. Solovay, On the cardinality of $\sum _{2}^{1}$ sets of reals, Foundations of Mathematics (Symposium Commemorating Kurt Gödel, Columbus, Ohio, 1966) Springer, New York, 1969, pp. 58–73. MR 0277382
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 356-360
- MSC: Primary 02K30
- DOI: https://doi.org/10.1090/S0002-9939-1975-0373896-5
- MathSciNet review: 0373896