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EQUIVALENCE OF TWO STRONG FORMS OF

DETERMINACY

ANDREAS BLASS

ABSTRACT.   Determinacy of all games of length oo with moves from

R  is equivalent to determinacy of all games of length oo     with moves

from co.

The purpose of this note is to show that two apparently different ways

of strengthening the axiom of determinacy lead to equivalent results.   One

way is to consider games in which there are uncountably many possible

moves from each position.   The other is to consider games in which each

play has length an ordinal greater than co.   We prove that determinacy for

games with  2   °  moves from each position (and plays of length  co) is equiva-

lent to determinacy for  games with plays of length co     (and   NQ  possible

moves from each position).

For any set A  and any ordinal number a, let AD(A, a) be the assertion

that one of the players has a winning strategy in every game of the following

sort.   The two players alternately select members of A  until, after  a moves,

they have produced a sequence (or play) x = (xif3):  f3 < a); the rules  of

the game are given by a certain set   G   of   a-sequences from   A, and

the first player wins the play  x if x £ G.   For more details see [l].   We

shall prove the following result (in Zermelo-Fraenkel set theory without the

axiom of choice).

Theorem.   AD(co, oo2) is equivalent to AD(R, oo).

Here co and co    have their usual meanings as ordinals, and R is the

set of functions from  co  to co; by the usual abuse of language, the members

of R will be called reals.   Before embarking on the proof of the theorem, we

make a number of remarks, some for later use and some for general information.

1. If the cardinality   \A\  of A is < |B]  and if a < f3, then AD(B, f3)

implies  AD(A, a).   Thus, our theorem remains true if R is taken to be the

set of analysts' reals (rather than set-theorists' reals).   Also, each of the

propositions AD(<y, co  ) and AD(R, oo) implies AD(o>, co), the ordinary

axiom of determinacy, AD.

2. Let AC(A) be the special case of the axiom of choice which
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asserts that any set of   \A\  or fewer nonempty subsets of A  admits a choice

function.   Then AC(A) is equivalent to AD(A, 2).   See [l],

3.   Any game over R  of length   a can be viewed as a game of length

co • a, over co.   One move in the former game (choosing a real, i.e. an co-

sequence of natural numbers) is represented by  co moves in the latter game.

This possibility was noted by Mycielski [l].   It immediately implies half

of our theorem:   AD(<u, co ) implies AD(R, co).

The preceding three remarks give us the implications in the following

diagram:

AC(R)

AD(cu, co2) -> AD(R, co) <^

^~""* AD

5. AC(R), being a consequence of the axiom of choice, cannot imply

AD which contradicts the axiom of choice.

6. AD does not imply  AC(R).   This result (which, I am told, was first

proved by Solovay) follows from the facts that (a) if AD holds then it continues

to hold in HOD(R), and(b) if AC(R) holds in HOD(R) then so does the full

axiom of choice.

7. The conjunction of AC(R) and AD is equivalent to AD(co, ex) tot

each a satisfying co • 2 < a < co . I do not know whether this conjunction

implies  AD(o), to  ), but it seems very unlikely.

At the referee's suggestion, we note that, if a+ /3 < K., then

AD(R, max (a, 1 + /3)) implies AD(R, a+f3).   The proof, like that of remark

7, is based on considering, for any game   G of length   a+ j8, the game   G   of

length  a in which each player tries to reach a position in   G such that he

has a winning strategy for the remaining  /3 moves in  G.   (With some caution

in avoiding the axiom of choice, one can replace   1 + /3 with  /3 unless

,8 = 1.)
8. AD(<y,   N.) is inconsistent with ZF.   J. Mycielski has pointed out

that his proof of this fact in [l] is incorrect but that the result is neverthe-

less true because AD(co,  X,) implies AD(N,, co) which is false in ZF [1,

p- 217].   The implication is established by noting that, in games of length

N ,, a player can code a countable ordinal  a with a sequence of  a. zeros

followed by a one.

Mycielski conjectured [l] that the axiom "AD(to, ct)  for all countable

cl" is consistent with  ZF, and Solovay has remarked that this axiom might

be true in the smallest transitive model of ZF   containing all ry-sequences

of ordinals.

Proof of the theorem.   Because of Remark 3( we need only prove that

AD(R, co) implies AD(o>, co2).   So assume AD(R, co) and its consequences
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AD  and AC(R) , and let G  be a game of length co     over co.   Think of each

play of G  as consisting of co  blocks of co  consecutive moves each.

Define an auxiliary game  G    which is played just like G  except that,

at the beginning of each block, player I must reveal the strategy he intends

to follow during that block.   Thus G    also consists of co  blocks, but each

block consists of just two moves:   I reveals a strategy o and II gives his

list   q of co  moves.   There is no need for I to actually make his co moves,

for they are determined by a and q.   Clearly, each of IPs moves in G   is

a real.   Each of l's moves a is a function from finite sequences of natural

numbers to natural numbers; by Godel numbering the finite sequences, we can

think of a as a real.   Thus G   is a game of length co  over R, so it is

determined.

G , compared to G, clearly puts player I at a disadvantage, for he must

reveal his strategy for each block beforehand.   Thus, if 1 has a winning

strategy in  G    then he also has one in  G (namely to use, rather than reveal,

the strategies a supplied by his winning strategy in G ).   Now suppose II

has a winning strategy r in C ; we shall produce a winning strategy for II

in  G, and this will finish the proof.

Consider all the plays x of G (functions from co     to co)  that can arise

when the players play G    and II uses r.   All these sequences x  and all

their initial segments of limit or zero length ico • n, n  finite) will be called

possibilities.   Of course, all possibilities  of length co     are wins for II,

because r is a winning strategy.   For any possibility y  of length oo • y

(y < co), there is a sequence 2 = iog'- f3 < y) of moves of I in G   such that

y  results when I plays 2  and II uses r.   We then say that 2  leads to y.

Given a possibility y  of length co • n < oo     and a sequence 2 =

(o"n, • • • , o _,)  leading to it, consider the one-term extensions 2   =

(o_, • • ■ , tr      , a  ) of 2 and the extensions y'  of y to which they lead.

Several choices of 2    may lead to the same y'.   For each 2, y, and y'

as above, we select a particular one-term extension 2    of 2  that leads to

y', and we   call these selected extensions (for all possible y') the standard

extensions of 2.   Notice that the selection is possible because of AC(R).

We will associate to certain possibilities y  specific sequences 2(y)

leading to y.   We proceed by induction on the length of y.   To the empty

possibility we associate the empty sequence.   If we have associated 2(y)

to y  and if some one-term extension of  2(y)   leads to y'  then we associate

to y'  the unique standard extension of 2(y)  that leads to y'.   Notice that,

if 2(z)  is defined and y  is an initial segment of z, then 2(y)  is defined

and an initial segment of 2(z).   Thus, if y  is a play of G of the full

length co   , and all its initial segments z of limit length have 2(z)  defined,

then these 2(z)'s are initial segments of a single 2  which leads to y.   It

follows that y  is a possibility and therefore a win for II.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



376 ANDREAS BLASS

We have shown that II wins all plays y of G whose initial segments z

of limit length have X(z)  defined.   Our aim is to find a strategy for II in G

which guarantees that the play will have this property.  It will suffice to show

that, if z has length co • n (i.e. z  is a play of the first n blocks of G) and

S(z) is defined, then there is a strategy r    for II in the next block which

will guarantee that, no matter what I does in that block, the play z'  of the

first n + 1  blocks has S(z') defined.   For, if this is proved, then we can

select one such r    for each such z (by AC(R))  and build a winning strategy

for II in G by having II use the selected r    in the next block after z has

been played.   It is clear by induction that when II uses this strategy, all the

plays z that can arise have 2(z) defined, so II will win.

It remains only to prove the existence of r .   Consider any z  for which

S(z) = (a , ... , a _j) is defined, and let

G   = Jo £ R: £(z concatenated with q) is not defined!.

G    is a game of length co  over co, so to show that II has a winning strategy

(which will be the required r )  we need only show that I does not have one

and then invoke AD.    So let a be any strategy for I in G   .   If I plays

(ct0,...,o-    ,, a) in G , player II, using r, will respond with n moves that

result in z (because £(z)  leads to z) and one more move p (the reply to

I's last move o).   It q is the result of I using a against p, then, by

definition, la., • • • , a _,, a) leads to z  concatenated with  q.   But then

S(z concatenated with q) is defined.   This means that, in G  , if I uses a

and II plays p, then II wins; so a is not a winning strategy for I  in G  .

By trivial modifications of the preceding proof, one can obtain the

following generalization.

Theorem.    For every countable limit ordinal a, AD(<d, to • o.)  is equiva-

lent to AD(R, a).

(The restriction to countable a is irrelevant because AD(n>, co • a.)

and AD(R, a)  are both false by Remark 8 if a. is uncountable.)

After submitting this paper, the author learned that this theorem had

already been proved by Jan Mycielski (unpublished) in 1967.
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