WILDLY RAMIFIED Z/2 ACTIONS IN DIMENSION TWO

M. ARTIN

ABSTRACT. The rings of power series which are invariant under an automorphism of order 2 are described by equations having a standard form.

Let \(k \) be a field of characteristic two, and let \(k[[u, v]] \) be a power series ring over \(k \) in two variables. Our object is to study the ring \(R \) of invariants of \(k[[u, v]] \) under an involution \(\sigma \), i.e., under a \(k \)-automorphism \(\sigma \) of \(k[[u, v]] \) of order 2. We assume that the action of \(\sigma \) on Spec \(k[[u, v]] \) is free except at the closed point. This means that there is no prime ideal \(\mathfrak{p} \) other than the maximal ideal which is \(\sigma \)-invariant, and such that the induced action on \(k[[u, v]]/\mathfrak{p} \) is trivial.

It is known that \(k[[u, v]] \) is finite over \(R \) [1], and in view of our assumption on fixed points, that \(k[[u, v]] \) is étale and of degree 2 over \(R \) except at the closed point. It follows that \(R \) is a complete local ring. Thus we are in effect studying a complete local \(k \)-algebra \(R \) such that the fundamental group of its pointed spectrum \(X = \text{Spec } R - \{ \mathfrak{m}_R \} \) is \(\mathbb{Z}/2 \), and that its universal covering is the pointed spectrum \(U \) of a regular local \(k \)-algebra with residue field \(k \).

Here is the result:

Theorem. The ring \(R \) can be defined in \(k[[x, y, z]] \) by one equation of the form

\[
z^2 + abz + a^2y + b^2x = 0,
\]

where \(a, b \in k[[x, y]] \) are nonunits which are relatively prime. Conversely, any such equation defines a ring \(R \) having the above properties. Its double cover \(k[[u, v]] \) is given by the equations

\[
u^2 + au + x = 0, \quad v^2 + bv + y = 0,
\]

and if we denote the action of \(\sigma \) by a bar, then

\[
u \bar{u} = x, \quad v \bar{v} = y, \quad u \bar{v} + \bar{u}v = z.
\]

It would be interesting to have an extension of this result to \(\mathbb{Z}/p \)-actions for \(p > 2 \).
We consider σ as a pair of power series in u, v. The linear terms will be given by a matrix whose square is the identity. After a linear change of variable, the matrix will be of the form $\begin{pmatrix} 1 & \epsilon \\ 0 & 1 \end{pmatrix}$. (It turns out that in fact $\epsilon = 0$.) This means

$$\overline{u} = u + (\text{degree} \geq 2), \quad \overline{v} = v + \epsilon u + (\text{degree} \geq 2).$$

Set

$$x = uu = u^2 + (\text{degree} \geq 3), \quad y = vv = v^2 + \epsilon uv + (\text{degree} \geq 3).$$

Then we obviously have $k[[u, v]] \supset R \supset k[[x, y]]$.

Lemma 1. $k[[u, v]]$ and R are free $k[[x, y]]$-algebras, of ranks 4 and 2 respectively.

Proof. It is clear that x, y form a system of parameters in $k[[u, v]]$ and hence that $k[[u, v]]$ is a finite $k[[x, y]]$-module. It is free by [4, IV-37, Proposition 22]. Thus we need only check that $\dim_k k[[u, v]]/(x, y) = 4$. That is clear—a basis consists of the residues of $1, u, v, uv$. Since $k[[u, v]]$ is generically étale and of degree 2 over R, R is of rank 2 over $k[[x, y]]$. Again, it is free by [4, loc. cit.].

Corollary. The multiplicity of R is two.

Lemma 2. The field extension $k((u, v))$ over $k((x, y))$ is Galois.

Proof. Let K be the field of fractions of R. Then the field extension $k((u, v))/K$ is separable and unramified in codimension 1 on R. Also, K is a separable extension of $k((x, y))$. For, otherwise R would be purely inseparable over $k[[x, y]]$, and such a ring cannot have any extension unramified in codimension 1 (purity of the branch locus [5], and [2, p. 240, Theorem 4.10]). Since $[K : k((x, y))] = 2$, K is Galois over $k((x, y))$.

Let $S = R \otimes R$ and $T = k[[u, v]] \otimes k[[u, v]]$, both tensor products being over the ring $k[[x, y]]$. Let $\overline{S}, \overline{T}$ denote the normalization of these rings. Above any codimension 1 prime of $k[[x, y]]$, the extension $R \to k[[u, v]]$ is étale and of degree 2. Hence $S \to T$ is étale of degree 4 there, and so is $\overline{S} \to \overline{T}$. Since K is Galois, $\overline{S} \approx R \times R$. Therefore \overline{T} is unramified in codimension 1 over R (say with R acting on the left in the tensor product), and so it is certainly unramified over $k[[u, v]]$ in codimension 1. By purity [4], T splits completely as $k[[u, v]]$-algebra. Therefore $k((u, v))$ is Galois.

Lemma 3. The Galois group of $k((u, v))/k((x, y))$ is $G = \mathbb{Z}/2 \oplus \mathbb{Z}/2$.

Proof. Otherwise, it must be a cyclic group. We know by purity that R is ramified over $k[[x, y]]$ at some codimension 1 prime \mathfrak{p} of $k[[x, y]]$. Let \mathfrak{q} be a prime of $k[[u, v]]$ lying over \mathfrak{p}, and let $H \subset G$ be the inertial subgroup
of \(\mathfrak{q} \). Then since \(\mathfrak{q} \) cannot be ramified over \(R \), \(H \) has order 2. There is a prime \(\mathfrak{q}' \) of \(k[[u, v]]^H \) which is unramified over \(\mathfrak{p} \). If \(G \) were cyclic, there would be only one subgroup \(H \) of order 2, and so we would have \(k[[u, v]]^H = R \). This contradicts the choice of \(\mathfrak{p} \).

By Lemma 3, there are exactly two fields \(L, L' \) between \(k((x, y)) \) and \(k((u, v)) \) besides \(K \). Let \(A, B \) denote the normalizations of \(k[[x, y]] \) in \(L \) and \(L' \) respectively. These are again free, \(k[[x, y]] \)-algebras of rank 2. Any such algebra is generated by one element. So we may write

\[
A = k[[x, y]][s]/(s^2 + as + \xi), \quad B = k[[x, y]][t]/(t^2 + bt + \eta)
\]

with \(a, b, \xi, \eta \in k[[x, y]] \). The sets \(\{a = 0\} \) and \(\{b = 0\} \) are the ramification loci of \(A \) and \(B \) respectively.

Lemma 4. The elements \(a, b \) are relatively prime nonunits in \(k[[x, y]] \).

Proof. The \(k[[x, y]] \)-algebras \(A, B \) are ramified, by purity. Hence \(a, b \) are not invertible. Let \(\mathfrak{p} \) be a codimension 1 prime of \(k[[x, y]] \) above which \(A \) is ramified. Then \(k[[u, v]] \) is also ramified above \(\mathfrak{p} \) and hence so is \(R \).

Let \(\mathfrak{q} \) be a prime of \(k[[u, v]] \) lying over \(\mathfrak{p} \). Then as in the previous lemma, the inertial subgroup \(H \) leads to an intermediate ring \(k[[u, v]]^H \) which is unramified at some (and hence all) primes over \(\mathfrak{p} \). This ring has no choice but to be \(B \). Thus \(\mathfrak{p} \) does not contain \(b \), and so \(a \) and \(b \) are relatively prime.

Lemma 5. \(k[[u, v]] = A \otimes B \), the tensor product being over \(k[[x, y]] \).

Proof. Since the ramification loci of \(A \) and \(B \) have only the closed point in common, \(A \otimes B \) is nonsingular in codimension 1. It follows easily that the natural map \(A \otimes B \to k[[u, v]] \) is an isomorphism in codimension 1. Both rings are free modules, and so \(\phi \) is an isomorphism.

We now view \(A \otimes B = k[[u, v]] \) as the ring defined by the equations

\[
s^2 + as + \xi = 0, \quad t^2 + bt + \eta = 0
\]

in \(k[[x, y, s, t]] \), and we apply the jacobian criterion. Since \(k[[u, v]] \) is formally smooth over \(k \) and \(a, b \) are nonunits, it follows that the jacobian matrix

\[
\begin{pmatrix}
\partial \xi/\partial x & \partial \xi/\partial y \\
\partial \eta/\partial x & \partial \eta/\partial y
\end{pmatrix}
\]

is invertible, hence that \(\xi, \eta \) is a regular system of parameters in \(k[[x, y]] \). This implies in turn that \(s, t \) is a regular system of parameters in \(k[[u, v]] \). By construction, the automorphism \(\sigma \) is given by the actions on each factor of \(A \otimes B \), i.e., we have \(\bar{s} = s + a, \bar{t} = t + b \), and \(s\bar{s} = \xi, t\bar{t} = \eta \). So, we can make the change of variable \((x, y, u, v) \to (\xi, \eta, s, t) \) to obtain equations

\[
(*) \quad u^2 + au + x = 0, \quad v^2 + bv + y = 0.
\]
Conversely, let \(a, b \in k[[x, y]] \) be any relatively prime nonunits, and consider the extension given by the equations \((*)\). It is immediate by Galois theory that they define a Galois extension with group \(G = \mathbb{Z}/2 \oplus \mathbb{Z}/2 \). Moreover, the Jacobian criterion shows that the ring defined by these equations is smooth, and equal to \(k[[u, v]] \). Let \(A, B, R \) be the three intermediate rings, where \(A = k[[x, y]][u]/(u^2 + au + x) \), and \(B = k[[x, y]][v]/(v^2 + bv + y) \).

Lemma 6. With the above notation, \(k[[u, v]] \) is unramified in codimension 1 over \(R \).

Proof. Clearly, \(k[[u, v]] \) is the normalization of \(A \otimes R \). Since \(A \) is étale over \(k[[x, y]] \) at each point of \(U_a = \text{Spec} \ k[[x, y]][1/a] \), it is clear that \(A \otimes R \), and hence \(k[[u, v]] \), is étale over \(R \) except above the locus \(\{a = 0\} \). Similarly, \(k[[u, v]] \) is étale over \(R \) except above \(\{b = 0\} \). Since \(a \) and \(b \) are relatively prime, the lemma follows.

We now ask for the equation defining \(R \). Let \(z = uv + uv \), where \(u = u + a \) and \(v = v + b \). Clearly \(z \in R \), and \(z = ub + va \). The irreducible equation for \(z \) over \(k[[x, y]] \) is easily seen to be

\[
f = z^2 + abz + a^2y + b^2x = 0.
\]

Therefore \(k[[x, y, z]]/(f) \) is birationally equivalent to \(R \). It remains to verify that this equation defines a normal ring, i.e., that the ring is nonsingular in codimension 1. This is clear except on the ramification locus \(\{ab = 0\} \). Say that \(a = 0 \), hence \(b \neq 0 \). At such a point,

\[
\frac{\partial f}{\partial x} = (\partial a/\partial x)bz + b^2.
\]

Let \(a' = \partial a/\partial x \). Then if \(\frac{\partial f}{\partial x} = 0 \), it follows that \(a'z + b = 0 \). Substitution of this equality into \(f \) leads to \(a'^2x = 1 \). Since \(a' \) is an integral power series but \(x \) is not a unit, this cannot hold anywhere on \(\text{Spec} \ k[[x, y, z]] \). This completes the proof of the Theorem.

Examples. Let us assume \(k \) algebraically closed. Involutions in dimension 1 are easily classified. If \(\sigma \) acts on \(k[[u]] \), then the invariant ring will be normal, and hence a power series ring \(k[[t]] \). By Artin-Schreier theory, we can choose a generator \(z \) for the field extension such that

\[
z^2 - z = \phi = \sum_{i=0}^{2r+1} a_i t^i
\]

and such that only odd negative indices \(a_i \) occur in the expression for \(\phi \). Write \(\phi = ut^{-2r+1} \), where \(u \) is a unit. Then a change of variable \(t' = tv \), where \(v^{2r-1} = u \) results in an equation

\[
z^2 - z = t^{-2r+1}.
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
The element \(s = t'Tz \) is a local parameter for \(k[[u]] \), satisfying the equation

\[
s^2 + ts + t = 0.
\]

So, this is the normal form in dimension 1. (The only case in which the involution corresponding to this equation is rational is \(r = 1 \), where it is the action

\[
s \mapsto s/(1 + s) = s + s^2 + s^3 + \cdots.
\]

We can obtain examples in dimension 2 by letting \(\sigma \) act independently on the variables \(u, v \) by some of the above actions. This leads to the cases \(a = x^i, b = y^j \):

\[
\begin{align*}
u^2 + x'u + x &= 0, \\
v^2 + y'v + y &= 0; \\
z^2 + x'y'z + x^2y + xy^2z &= 0.
\end{align*}
\]

This equation defines a rational singularity [3] if and only if \(i \) or \(j = 1 \). If say \(i = 1 \), it is a double point of type \(D_n \) with \(n = 4j \):

\[
z^2 + xy'z + x^2y + xy^2z = 0.
\]

Setting \(a = y, b = x \) leads to a rational double point of type \(E_6 \) [3, p. 270]:

\[
z^2 + x^3yz + y^3 + x^5 = 0.
\]

REFERENCES

