Entireness of the endomorphism rings of one-dimensional formal groups
HTML articles powered by AMS MathViewer
- by Jonathan Lubin
- Proc. Amer. Math. Soc. 52 (1975), 8-10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0374154-5
- PDF | Request permission
Abstract:
If, for a one-dimensional formal group of height $h$ which is defined over the integers in a local field of characteristic zero, all the coefficients in degree less than ${p^h}$ lie in an unramified extension of the $p$-adic numbers, then the endomorphism ring of the formal group is integrally closed.References
- Lawrence Cox, Formal $A$-modules, Bull. Amer. Math. Soc. 79 (1973), 690–694. MR 325626, DOI 10.1090/S0002-9904-1973-13263-X
- Michel Lazard, Les zéros des fonctions analytiques d’une variable sur un corps valué complet, Inst. Hautes Études Sci. Publ. Math. 14 (1962), 47–75 (French). MR 152519
- Jonathan Lubin, One-parameter formal Lie groups over ${\mathfrak {p}}$-adic integer rings, Ann. of Math. (2) 80 (1964), 464–484. MR 168567, DOI 10.2307/1970659
- Jonathan Lubin, Finite subgroups and isogenies of one-parameter formal Lie groups, Ann. of Math. (2) 85 (1967), 296–302. MR 209287, DOI 10.2307/1970443 —, Formal $A$-modules defined over $A$, Symposia Mathematica, vol. III (INDAM, Rome, 1968/69), Academic Press, London, 1970, pp. 241-245. MR 42 #260.
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 8-10
- MSC: Primary 14L05
- DOI: https://doi.org/10.1090/S0002-9939-1975-0374154-5
- MathSciNet review: 0374154