Une caractérisation des ensembles des points de discontinuité des fonctions linéairement-continues
HTML articles powered by AMS MathViewer
- by Zbigniew Grande
- Proc. Amer. Math. Soc. 52 (1975), 257-262
- DOI: https://doi.org/10.1090/S0002-9939-1975-0374349-0
- PDF | Request permission
Abstract:
A function $f:{R^2} \to R$ (where $R$ is the set of real numbers) is called linearly-continuous if for each $x$ and $y$ the functions ${f_x}$ and ${f^y}$ given by ${f_x}(t) = f(x,t)$ and ${f^y}(t) = f(t,y)$ for $- \infty < t < \infty$ are continuous. It is proven that: A set $A \subset {R^2}$ is the set of points of discontinuity for a linearly-continuous function iff $A$ is ${F_\sigma }$ contained in a cartesian product of two linear sets of first category. It is proven also that an analogous characterisation is not possible for an approximatively linearly-continuous function.References
- A. Alexiewicz and W. Orlicz, Sur la continuité et la classification de Baire des fonctions abstraites, Fund. Math. 35 (1948), 105–126 (French). MR 27445, DOI 10.4064/fm-35-1-105-126 H. Hahn, Reelle funktionen, Chelsea, New York, 1948. W. Sierpiński, Sur une propriété des ensembles ${F_\sigma }$ linéaires, Fund. Math. 14 (1929), 216-220.
- G. P. Tolstov, On partial derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 13 (1949), 425–446 (Russian). MR 0031544
- Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54 (French). MR 37338, DOI 10.1090/S0002-9947-1950-0037338-9
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 257-262
- MSC: Primary 26A54
- DOI: https://doi.org/10.1090/S0002-9939-1975-0374349-0
- MathSciNet review: 0374349