QUASI-NILPOTENT SETS IN SEMIGROUPS

H. L. CHOW

ABSTRACT. In a compact semigroup S with zero 0, a subset A of S is called quasi-nilpotent if the closed semigroup generated by A contains 0. A probability measure μ on S is called nilpotent if the sequence (μ^n) converges to the Dirac measure at 0. It is shown that a probability measure is nilpotent if and only if its support is quasi-nilpotent. Consequently, the set of all nilpotent measures on S is convex and everywhere dense in the set of all probability measures on S and the union of their supports is S.

In a topological semigroup with zero 0, an element x is termed nilpotent if $x^n \to 0$ as $n \to \infty$ [5]. This definition has an obvious extension to subsets of the semigroup, i.e. a subset A is nilpotent if $A^n \to 0$ as $n \to \infty$. Now we call a subset B of the semigroup quasi-nilpotent if the closed semigroup generated by B contains the zero 0. It is shown that, when the topological semigroup is compact, a singleton is nilpotent if and only if quasi-nilpotent. Then we investigate the set of probability measures on a compact semigroup and characterize a nilpotent probability measure as a measure with quasi-nilpotent support.

Let S be a topological semigroup with zero 0, and A a subset of S. Let $S(A)$ denote the semigroup generated by A, i.e. $S(A) = \bigcup_{n=1}^{\infty} A^n$. It is trivial that any subset containing 0 is quasi-nilpotent; in particular, the set N_S of nilpotent elements of S is quasi-nilpotent. From the semigroup S given in Example 6 below, in which $N_S = [0, 1)$ and $N_S^n = N_S$ for all n [4, p. 56], we see that N_S is not nilpotent.

Theorem 1. Let A be a subset of S. Then (i) if $S(A) \cap N_S = \emptyset$ (where the bar denotes closure), then A is quasi-nilpotent.

(ii) If A^n is quasi-nilpotent for some n, then A itself is quasi-nilpotent.

Proof. (i) Take $a \in S(A) \cap N_S$. In view of the fact that $a^n \to 0$, we have $0 \in S(A)$, i.e. A is quasi-nilpotent.

(ii) Since $S(A^n) \subset S(A)$ and $0 \in S(A^n)$, it follows that $0 \in S(A)$, and the theorem is proved.

We remark that, if A^n is nilpotent for some n, then A is also nilpotent, by a similar argument to that given in the proof of Lemma 2.1.4 of [4].
Evidently a nilpotent set is quasi-nilpotent. As for the converse, which may not be true in general, we prove a special case in

Theorem 2. Suppose S is a compact semigroup with 0. Then $x \in S$ is nilpotent if and only if quasi-nilpotent.

Proof. It is enough to show that x is nilpotent if it is quasi-nilpotent. Recall that the minimal ideal $K(S(x))$ of the compact semigroup $S(x)$ contains exactly all cluster points of the sequence $(x^n)_{n=1}^{\infty}$ (see, for example, [4, Theorem 3.1.1]). Now $K(S(x)) = \{0\}$ since $0 \in S(x)$. Thus the sequence (x^n) has a unique cluster point, whence $x^n \to 0$ as $n \to \infty$, completing the proof.

Remark. The preceding theorem does not hold for a compact semitopological semigroup (i.e. the multiplication is only separately continuous). For instance, take the compact monothetic semigroup $S(\mu)$ generated by μ, with μ defined in Example 2 of [1]; then the semigroup has zero 0 and identity 1 such that $u^{n!/2} \to 0$ and $u^{n!} \to 1$. As a consequence, the element u is quasi-nilpotent but not nilpotent.

In what follows S will be a compact semigroup with zero 0. Denote by $P(S)$ the set of probability measures (i.e. normalized positive regular Borel measures) on S. For $\mu, \nu \in P(S)$, define convolution $\mu \ast \nu \in P(S)$ by

$$\int f(z) \, d(\mu \ast \nu)(z) = \int \int f(xy) \, d\mu(x) \, d\nu(y)$$

for all continuous functions f on S, so that $P(S)$ forms a semigroup. If $P(S)$ is endowed with the weak* topology, i.e. a net (μ_α) in $P(S)$ converges to $\mu \in P(S)$ if $f(x) \, d\mu_\alpha(x) \to f(x) \, d\mu(x)$ for continuous functions f on S, then $P(S)$ is a compact semigroup [3].

The support of $\mu \in P(S)$, $\text{supp } \mu$, is the smallest closed set with μ-mass 1. It is well known [3, Lemma 2.1] that, for $\mu, \nu \in P(S)$, $\text{supp } (\mu \ast \nu) = (\text{supp } \mu) \cdot (\text{supp } \nu)$.

Let Γ be a subset of $P(S)$ and define its support as the set $\text{supp } \Gamma = \bigvee_{\mu \in \Gamma} \text{supp } \mu$. It is easy to see that $\text{supp } (\Gamma_1 \cap \Gamma_2) = (\text{supp } \Gamma_1) \cap (\text{supp } \Gamma_2)$ for $\Gamma_1 \subseteq P(S), \Gamma_2 \subseteq P(S)$.

Lemma 3. Let $\Gamma \subseteq P(S)$. Then $\text{supp } S(\Gamma) = \text{supp } S(\Gamma) = \overline{S(\text{supp } \Gamma)}$.

Proof. That $\overline{S(\Gamma)} = \text{supp } S(\Gamma)$ follows from a result in [3, p. 55]. We assert that $\text{supp } S(\Gamma) = \overline{S(\text{supp } \Gamma)}$. Since $S(\Gamma) \supseteq \Gamma^n$ for $n = 1, 2, \ldots$, clearly $S(\Gamma) \supseteq \text{supp } \Gamma^n = \overline{S(\text{supp } \Gamma)^n}$ and so $S(\Gamma) \supseteq S(\text{supp } \Gamma)$. Whence $\text{supp } S(\Gamma) \supseteq S(\text{supp } \Gamma)$. On the other hand, take any $\mu \in S(\Gamma)$. Then $\mu \in \Gamma^n$ for some n, implying that $\text{supp } \mu \subseteq \text{supp } \Gamma^n = \overline{S(\text{supp } \Gamma)^n} \subseteq S(\text{supp } \Gamma)$. This gives $\text{supp } S(\Gamma) \subseteq \overline{S(\text{supp } \Gamma)}$, and the result follows.

Since the Dirac measure θ at 0 is a zero in $P(S)$, we can now consider quasi-nilpotent sets in $P(S)$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 4. A subset $\Gamma \subset P(S)$ is quasi-nilpotent if and only if $\text{supp} \, \Gamma$ is quasi-nilpotent in S.

Proof. Suppose first that Γ is quasi-nilpotent, i.e. $\theta \in \overline{S(\Gamma)}$. By virtue of Lemma 3, we have $0 \in \overline{S(\text{supp} \, \Gamma)}$, i.e. $\text{supp} \, \Gamma$ is quasi-nilpotent. Conversely, suppose $\text{supp} \, \Gamma$ is quasi-nilpotent in S. This means that $0 \in \overline{S(\text{supp} \, \Gamma)}$ and therefore $|0|$ is the minimal ideal $K(\overline{S(\text{supp} \, \Gamma)})$ of the semigroup $\overline{S(\text{supp} \, \Gamma)}$.

Now consider the minimal ideal $K(\overline{S(\Gamma)})$ of the compact semigroup $\overline{S(\Gamma)}$ [6, Theorem 2]. Since $\overline{S(\text{supp} \, \Gamma)} = \overline{S(\text{supp} \, \Gamma)}$ (see, for example, [2, Theorem 5(2)]) and $\overline{S(\Gamma)} = \overline{S(\text{supp} \, \Gamma)}$ by Lemma 3, we have $|0| = \text{supp} \, K(\overline{S(\Gamma)})$, giving that $K(\overline{S(\Gamma)}) = \{\theta\}$. Accordingly $\theta \in \overline{S(\Gamma)}$, and the theorem is proved.

By Theorems 2 and 4, we immediately obtain

Theorem 5. A measure $\mu \in P(S)$ is nilpotent if and only if $\text{supp} \, \mu$ is quasi-nilpotent in S.

Example 6. The result in Theorem 5 is best possible in the sense that the support of a nilpotent measure in $P(S)$ need not be a nilpotent subset of S. Take the semigroup $S = [0, 1]$ with the usual topology and the ordinary multiplication. Let μ be the restriction to S of the Lebesgue measure on the real line. Since $\text{supp} \, \mu = S$ is quasi-nilpotent, it follows that μ is nilpotent. However, $\text{supp} \, \mu$ is not nilpotent since $(\text{supp} \, \mu)^n = \text{supp} \, \mu = S$ for all n.

Note that Theorem 5 is not true for the compact semitopological semigroup $S_{\mu}(\mu)$ considered in the Remark above. Obviously the Dirac measure $\delta(u)$ at u is not nilpotent while $\text{supp} \, \delta(u)$ is quasi-nilpotent in S.

Applying Theorem 5, we obtain the following results about the set $N(P(S))$ of nilpotent elements in $P(S)$. First we have a sufficient condition for a probability measure to be nilpotent.

Theorem 7. Let $\mu \in P(S)$. If $\text{supp} \, \mu \cap N(S) \neq \emptyset$, then $\mu \in N(P(S))$.

Proof. Since $\overline{S(\text{supp} \, \mu)} \cap N(S) \supset \text{supp} \, \mu \cap N(S) \neq \emptyset$, we see that the set $\text{supp} \, \mu$ is quasi-nilpotent in S by Theorem 1 (i). Whence μ is nilpotent.

Example 8. The converse of Theorem 7 may not hold. For instance, take the semigroup S with the following multiplication table:

$$
\begin{array}{ccc}
0 & a & b & c \\
0 & 0 & 0 & 0 \\
a & 0 & 0 & a \\
b & 0 & 0 & b \\
c & 0 & a & a & c \\
\end{array}
$$

Then the measure $\mu = \frac{1}{2} \delta(b) + \delta(c) \in N(P(S))$ since $0 \in \text{supp} \, \mu^2$. However, $\text{supp} \, \mu \cap N(S) = \{b, c\} \cap \{0, a\} = \emptyset$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Corollary 9. (i) $N(P(S))$ is a noncountable set.
(ii) $\bigcup \{\text{supp } \mu : \mu \in N(P(S))\} = S$.

Proof. (i) Take any measure $\mu \neq \theta$ and real number $0 < t < 1$. Then the measure $t \mu + (1 - t)\theta$ is nilpotent since $0 \in \text{supp } (t \mu + (1 - t)\theta) \cap N(S)$. Hence the set $N(P(S)) \supset \{t \mu + (1 - t)\theta : 0 < t < 1\}$ and so is noncountable.

(ii) Let $a \in S$. Since $0 \in \text{supp } \frac{1}{2}(\delta(a) + \theta) \cap N(S)$, it follows that $\frac{1}{2}(\delta(a) + \theta) \in N(P(S))$. That $a \in \text{supp } \frac{1}{2}(\delta(a) + \theta)$ gives the result.

A semigroup with zero is said to be nil if each element is nilpotent.

Theorem 10. $P(S)$ is nil if and only if S is nil.

Proof. The "if" part follows from the fact that, for $\mu \in P(S)$, $\text{supp } \mu \cap N(S) = \text{supp } \mu \neq \emptyset$. To prove the "only if" part, take $a \in S$ and note that $\delta(a)$ is nilpotent in $P(S)$. So a is nilpotent in S and the proof is complete.

Lemma 11. Let $\mu, \nu \in P(S)$. If $\mu \in N(P(S))$ and $\text{supp } \mu \subset \text{supp } \nu$, then $\nu \in N(P(S))$.

Proof. This is immediate since $0 \in \overline{S(\text{supp } \mu)} \subset \overline{S(\text{supp } \nu)}$.

Theorem 12. (i) $N(P(S))$ is a convex set and hence connected.
(ii) $N(P(S)) = P(S)$.

Proof. (i) Take $\mu, \nu \in N(P(S))$. For real number $0 < t < 1$, the measure $t \mu + (1 - t)\nu \in N(P(S))$ since
\[
\text{supp } (t \mu + (1 - t)\nu) = \text{supp } \mu \cup \text{supp } \nu \supset \text{supp } \mu.
\]
Thus $N(P(S))$ is convex.

(ii) Let $\tau \in P(S)$. Clearly $\theta/n + (n - 1)\tau/n \in N(P(S))$ for any positive integer n. As the sequence $(\theta/n + (n - 1)\tau/n)_{n=1}^{\infty}$ converges to τ, we see that $N(P(S))$ is dense in $P(S)$.

Corollary 13. Let W be a subset of $P(S)$. If $W \supset N(P(S))$, then W is a connected set.

Proof. This follows simply from the previous theorem.

For any $\mu \in P(S)$, it is a well-known fact that the sequence $((\mu + \mu^2 + \cdots + \mu^n)/n)_{n=1}^{\infty}$ must converge to a measure $L(\mu) \in P(S)$ such that $\text{supp } L(\mu)$ is the minimal ideal of the semigroup $\overline{S(\text{supp } \mu)}$; see [7] or [8].

Theorem 14. The measure $\mu \in P(S)$ is nilpotent if and only if $L(\mu) = \theta$.

Proof. In view of the fact that $L(\mu) = \theta$ if and only if $\overline{S(\text{supp } \mu)}$ contains 0, we apply Theorem 5 to conclude the proof.
QUASI-NILPOTENT SETS IN SEMIGROUPS

REFERENCES

DEPARTMENT OF MATHEMATICS, CHUNG CHI COLLEGE, THE CHINESE UNIVERSITY OF HONG KONG, HONG KONG