R_3-QUASI-UNIFORM SPACES
AND TOPOLOGICAL HOMEOMORPHISM GROUPS

MASSOOD SEYEDIN

ABSTRACT. It is well known that if X is a completely regular space and G is a homeomorphism group of X onto itself such that G is equicontinuous with respect to a compatible uniformity of X, then G is a topological group under the topology of pointwise convergence. In this paper, we obtain a generalization of the above result by means of R_3-quasi-uniformities.

1. Introduction. Let (X, r) be a topological space. It is well known that if \mathcal{U} is a compatible uniformity on X such that G is a homeomorphism group that is equicontinuous with respect to \mathcal{U}, then G is a topological group under the topology of pointwise convergence. R. V. Fuller has obtained an analogous result for regular spaces [2] and we have shown previously that a similar result applies when (X, r) is only an R_0 space (and hence, in particular, if X is T_1 or regular) [6]. In this paper we use R_3-quasi-uniformities to complement Fuller’s result. We take the domain space (X, r) to be an arbitrary topological space. If our domain space is regular, it is known that there exists a compatible R_3-quasi-uniformity \mathcal{U} on X, that is, $r = r_\mathcal{U}$ [5]. Finally we give a simple example of a non-R_0 topological space (hence not regular) for which our principal result, Theorem 6, obtains.

Let Y be a topological space. A collection \mathcal{O}^* of two-element open covers of Y is said to be a semiuniformity for Y if for each $q \in Y$ and each neighborhood V of q there is $\{V_1, V_2\} \in \mathcal{O}^*$ such that $q \in V_1 \subset V$ and $Y - V_2$ is a neighborhood of q [2]. Let F be a family of functions from a topological space X to semiuniform space (Y, \mathcal{O}^*). Then F is semiequicontinuous if for each $V \in \mathcal{O}^*$ there is an open cover \mathcal{A} of X such that \mathcal{A} refines $f^{-1}(V)$ for each $f \in F$ [2]. One may easily show that a topological space has a semiuniformity if and only if it is regular.

Let X be a nonempty set. A quasi-uniformity for X is a filter \mathcal{U} of reflexive subsets of $X \times X$ such that if $U \in \mathcal{U}$, there is $V \in \mathcal{U}$ such that $V \circ V \subset U$ [5]. Let G be a collection of maps from a topological space (X, r) into a quasi-uniform space (Y, \mathcal{U}) and let $x \in X$. Then F is quasi-equicontinuous at x provided that for each $U \in \mathcal{U}$ there exists a neighbor-
hood N of x such that for $f \in F$, $f(N) \subseteq U(f(x))$ and F is quasi-equicontinuous provided F is quasi-equicontinuous at each $x \in X$. If $y \in Y$ and $U_1 \in \mathcal{U}$ such that $U_1(y)$ is open and $U_2 \in \mathcal{U}$ such that $U_2 \circ U_1 \circ U_2 \circ U_2(y) \subseteq U_1(y)$ and $U_2 = U_2^{-1}$, then $I = \{U_1(y), \bigcup \text{int } U_2(p) ; p \notin U_2 \circ U_2(y)\}$ is a two element quasi-uniform cover of X. A quasi-uniform space (X, \mathcal{U}) is R_3, if, given $x \in X$ and $U \in \mathcal{U}$, there exists a symmetric $W \in \mathcal{U}$ such that $W \circ W(x) \subseteq U(x)$ [3]. It is shown that if (X, r) is regular, then the Pervin quasi-uniformity on X is R_3 [5, Theorem 3.17].

2. Topological groups of homeomorphisms.

Theorem 1. Let (Y, \mathcal{U}) be an R_3-quasi-uniform space. Then the collection of all two element quasi-uniform covers of Y is a semiuniformity for Y.

Proof. Let $q \in Y$ and let V be a neighborhood of q. Let $U_1 \in \mathcal{U}$ such that $U_1(q) \subseteq V$ and $U_1(q)$ is open. By hypothesis there is a symmetric entourage $U_2 \in \mathcal{U}$ such that $U_2 \circ U_2 \circ U_2 \circ U_2(q) \subseteq U_1(q)$. Let $C = \{U_1(q), \bigcup \text{int } U_2(y) ; y \notin U_2 \circ U_2(q)\}$. Suppose that $x \in Y$ and $x \notin U_1(q)$. Note that if $z \in Y$ and $z \in U_2 \circ U_2(q)$, then $U_2(z) \subseteq U_1(q)$. Thus $x \notin U_2 \circ U_2(q)$ and $x \in \text{int } U_2(x)$. Therefore C is an open cover of Y. Furthermore, let $p \in U_2(q)$ and suppose that $p \in V_2 = \bigcup \text{int } U_2(y) ; y \notin U_2 \circ U_2(q)$. Then there exists a $y \in Y$ such that $y \in U_2(q)$ and $y \notin U_2 \circ U_2(q)$. But $y \in U_2(p) \subseteq U_2 \circ U_2(q)$—a contradiction. Then $\mathcal{U}^* = \{C ; q \in Y \text{ and } V \text{ is a neighborhood of } q\}$ is a semiuniformity for Y.

The semiuniformity \mathcal{U}^* of the preceding theorem will be called a quasi-uniform semiuniformity.

Theorem 2. Let (Y, \mathcal{U}) be an R_3-quasi-uniform space and let F be a family of quasi-equicontinuous functions from a topological space (X, r) into (Y, \mathcal{U}). Then F is semiequicontinuous with respect to the quasi-uniform semiuniformity of \mathcal{U}.

Proof. Let \mathcal{U}^* be the quasi-uniform semiuniformity of \mathcal{U}, let $y, q \in Y$ and $U_1, U_2 \in \mathcal{U}$. Let $l \in \mathcal{U}^*$ such that $l = \{U_1(q), \bigcup \text{int } U_2(y) ; y \notin U_2 \circ U_2(q)\}$. By hypothesis, for each $x \in X$ there exists a neighborhood N_x of x such that for all $f \in F$, $f(N_x) \subseteq U_2(f(x))$. It may be seen that $U_2(f(x))$ is contained in either $U_1(q)$ or $V_2 = \bigcup \text{int } U_2(y) ; y \notin U_2 \circ U_2(q)$ as follows: Let $z_1, z_2 \in U_2(f(x))$, so that $z_1 \notin U_1(q)$ and $z_2 \notin V_2$. Now if $z_2 \notin V_2$, then $z_2 \in U_2 \circ U_2(q)$ and $(q, z_2) \in U_2 \circ U_2$. Since $(z_2, f(x)) \in U_2$ and $(f(x), z_1) \in U_2$, $z_1 \in U_2 \circ U_2 \circ U_2(q) \subseteq U_1(q)$—a contradiction. Thus $\{N_x ; x \in X\}$ is the desired open cover of X.

The proof of the following theorem is based on the proof of [2, Theorem 4].

Theorem 3. Let F be a family of one-to-one functions of a topological space (X, r) onto itself. Let \mathcal{U} be an R_3-quasi-uniformity on X such that
If F^{-1} is \mathcal{U}-quasi-equicontinuous, then the mapping $\Psi : F \to F$, defined by $\Psi(f) = f^{-1}$, is continuous relative to the topology of pointwise convergence on F and F^{-1}.

Proof. Throughout the proof, if $p \in X$ and $U \in t$, then $W(p, U)$ denotes \{ $f \in F$: $f(p) \in U$ \}. Let \mathcal{U}^* be the quasi-uniform semiuniformity of \mathcal{U}. Let $g \in F$, $p \in X$ and $V \in t$ such that $W(p, V)$ is a neighborhood of g. Since $t \subseteq t_0$ there is $\{ V_1, V_2 \} \in \mathcal{U}^*$ such that $g^{-1}(p) \subseteq V_1 \subseteq V$ and $X - V_2$ is a t_0 neighborhood of $g^{-1}(p)$. By Theorem 2, F^{-1} is semiequicontinuous with respect to \mathcal{U}^*. Let U be a t-open cover of X such that U refines $\{ f(V_1), f(V_2) \}$ for all $f \in F$ and let U be a member of \mathcal{U} that contains p. Then $W(g^{-1}(p), U)$ is a neighborhood of g. Let $f \in F$ such that $f \in W(g^{-1}(p), U)$. Then $f(g^{-1}(p)) \in U$ and since $f(g^{-1}(p)) \notin f(V_2)$, $U \notin f(V_2)$. Hence $U \subseteq f(V_1)$ and $f^{-1}(U) \subseteq V_1 \subseteq V$. Consequently, $f^{-1}(p) \in V$.

Proposition 4. Let (X, t) be a topological space and let F be a collection of quasi-equicontinuous functions from (X, t) into a quasi-uniform space (Y, \mathcal{U}). Then the topology of pointwise convergence on F is jointly continuous.

Proof. Let $f \in F$ and let $x \in X$. For any $U \in \mathcal{U}$, $U(f(x))$ is a neighborhood of $f(x)$. Let $V \in \mathcal{U}$ such that $V \circ V \subseteq U$. By hypothesis there exists a neighborhood N of x such that for all $f \in F$, $f(N) \subseteq V(f(x))$. Consider the neighborhoods $W(x, V)(f)$ and N of f and x respectively. Let $z \in N$ and let $g \in W(x, V)(f)$. Then $(f(x), g(x)), (g(x), g(z)) \in V$ and $g(z) \in V \circ V(f(x)) \subseteq U(f(x))$.

Theorem 5 [2, Theorem 5]. Let F be a semigroup (under composition) of continuous functions from a topological space X into itself. If the topology of pointwise convergence on F is jointly continuous, then composition is continuous relative to the topology of pointwise convergence.

Theorem 6. Let (X, t) be any topological space and let G be a group of homeomorphisms of X onto X. Let \mathcal{U} be any R_3-quasi-uniformity on X such that $t \subseteq t_0$ and G is quasi-equicontinuous with respect to \mathcal{U}. Then G is a topological group under the topology of pointwise convergence.

Proof. By Proposition 4, the topology of pointwise convergence on G is jointly continuous. Thus by Theorems 3 and 5, G is a topological group under the topology of pointwise convergence.

We conclude by giving an example of a non-R_0 topological space (X, t) with an R_3-quasi-uniformity \mathcal{U} on X such that $t \subseteq t_0$.

Definition [4]. A preorder on a set X is any reflexive and transitive relation on X.

Example. Let N denote the set of natural numbers. Let \leq be an anti-symmetric preordering on N defined as follows:
(i) \(x \leq x \) for all \(x \in N \),
(ii) \(2 \leq 2^k, \ k = 1, 2, 3, \ldots \), and
(iii) \(3 \leq 3^k, \ k = 1, 2, 3, \ldots \).

Let \(\tau \) be the left topology associated with the preordering \(\leq \) [4]. It is not difficult to see that \((N, \tau)\) is a \(T_0 \) space which is not \(T_1 \) and hence not \(R_0 \) [5, Corollary 3.9]. Let \(U_n = \{(x, y)|x = y \text{ or } x \geq n\} \), \(\beta = \{U_n|n \in N\} \) and \(\mathcal{V} \) denote the quasi-uniformity on \(N \) generated by the base \(\beta \) [1]. Then \(\mathcal{V} \) is an \(R_3 \)-quasi-uniformity on \(N \) with the property that \(\tau \) is properly contained in \(\tau_{\mathcal{V}} \).

REFERENCES

DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF IRAN, EVEEN, TEHERAN, IRAN