Certain overrings of right hereditary, right Noetherian rings are $V$-rings
HTML articles powered by AMS MathViewer
- by Friedhelm Hansen
- Proc. Amer. Math. Soc. 52 (1975), 85-90
- DOI: https://doi.org/10.1090/S0002-9939-1975-0376764-8
- PDF | Request permission
Abstract:
It will be shown that a particular quotient ring of a ring $R$ is a nontrivial $V$-ring if $R$ is a special kind of a right hereditary, right Noetherian ring. Another result states that all overrings of a right and left Goldie $V$-ring, which is semiartinian modulo every essential right ideal, are $V$-rings.References
- H.-H. Brungs, Overrings of principal ideal domains, Proc. Amer. Math. Soc. 28 (1971), 44–46. MR 271137, DOI 10.1090/S0002-9939-1971-0271137-7
- A. W. Chatters, The restricted minimum condition in Noetherian hereditary rings, J. London Math. Soc. (2) 4 (1971), 83–87. MR 292877, DOI 10.1112/jlms/s2-4.1.83
- John H. Cozzens, Homological properties of the ring of differential polynomials, Bull. Amer. Math. Soc. 76 (1970), 75–79. MR 258886, DOI 10.1090/S0002-9904-1970-12370-9
- Carl Faith, Lectures on injective modules and quotient rings, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR 0227206, DOI 10.1007/BFb0074319
- Carl Faith, Algebra: rings, modules and categories. I, Die Grundlehren der mathematischen Wissenschaften, Band 190, Springer-Verlag, New York-Heidelberg, 1973. MR 0366960, DOI 10.1007/978-3-642-80634-6
- A. W. Goldie, Semi-prime rings with maximum condition, Proc. London Math. Soc. (3) 10 (1960), 201–220. MR 111766, DOI 10.1112/plms/s3-10.1.201
- Oscar Goldman, Rings and modules of quotients, J. Algebra 13 (1969), 10–47. MR 245608, DOI 10.1016/0021-8693(69)90004-0
- F. Hansen, On one-sided prime ideals, Pacific J. Math. 58 (1975), no. 1, 79–85. MR 379582, DOI 10.2140/pjm.1975.58.79
- Lawrence Levy, Unique subdirect sums of prime rings, Trans. Amer. Math. Soc. 106 (1963), 64–76. MR 142567, DOI 10.1090/S0002-9947-1963-0142567-9
- G. O. Michler and O. E. Villamayor, On rings whose simple modules are injective, J. Algebra 25 (1973), 185–201. MR 316505, DOI 10.1016/0021-8693(73)90088-4
- B. L. Osofsky, On twisted polynomial rings, J. Algebra 18 (1971), 597–607. MR 280521, DOI 10.1016/0021-8693(71)90142-6
- V. S. Ramamurthi and K. M. Rangaswamy, Generalized $V$-rings, Math. Scand. 31 (1972), 69–77. MR 321974, DOI 10.7146/math.scand.a-11412
- Bo Stenström, Rings and modules of quotients, Lecture Notes in Mathematics, Vol. 237, Springer-Verlag, Berlin-New York, 1971. MR 0325663, DOI 10.1007/BFb0059904
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 85-90
- MSC: Primary 16A52
- DOI: https://doi.org/10.1090/S0002-9939-1975-0376764-8
- MathSciNet review: 0376764