Sometimes only square matrices can be diagonalized
HTML articles powered by AMS MathViewer
- by Lawrence S. Levy
- Proc. Amer. Math. Soc. 52 (1975), 18-22
- DOI: https://doi.org/10.1090/S0002-9939-1975-0376775-2
- PDF | Request permission
Abstract:
It is proved that every SQUARE matrix over a serial ring is equivalent to some diagonal matrix, even though there are rectangular matrices over these rings which cannot be diagonalized.References
- Hyman Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466–488. MR 157984, DOI 10.1090/S0002-9947-1960-0157984-8
- N. Bourbaki, Éléments de mathématique. 23. Première partie: Les structures fondamentales de l’analyse. Livre II: Algèbre. Chapitre 8: Modules et anneaux semi-simples, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1261, Hermann, Paris, 1958 (French). MR 0098114
- David Eisenbud and Phillip Griffith, Serial rings, J. Algebra 17 (1971), 389–400. MR 276274, DOI 10.1016/0021-8693(71)90020-2
- Marshall Hall Jr., Combinatorial theory, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1967. MR 0224481
- Joachim Lambek, Lectures on rings and modules, Blaisdell Publishing Co. [Ginn and Co.], Waltham, Mass.-Toronto, Ont.-London, 1966. With an appendix by Ian G. Connell. MR 0206032
- Lawrence S. Levy and J. Chris Robson, Matrices and pairs of modules, J. Algebra 29 (1974), 427–454. MR 340337, DOI 10.1016/0021-8693(74)90079-9
- Bruno J. Mueller, On semi-perfect rings, Illinois J. Math. 14 (1970), 464–467. MR 262299 R. B. Warfield, Serial rings, semihereditary rings, and finitely presented modules, J. Algebra (to appear).
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 18-22
- MSC: Primary 16A64; Secondary 15A21
- DOI: https://doi.org/10.1090/S0002-9939-1975-0376775-2
- MathSciNet review: 0376775