Asymptotic behavior and nonoscillation of Volterra integral equations and functional differential equations

Authors:
A. F. IzĂ© and A. A. Freiria

Journal:
Proc. Amer. Math. Soc. **52** (1975), 169-177

MSC:
Primary 34K15; Secondary 45M10

DOI:
https://doi.org/10.1090/S0002-9939-1975-0377233-1

MathSciNet review:
0377233

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is proved that if ${q_{ij}}(t,s){\rho _j}(s){[{\rho _i}(t)]^{ - 1}}$ is bounded, $i,j = 1,2, \ldots ,n$, and $f(t,x,x(u(s)))$ is â€śsmall", \[ x(u(s)) = ({x_1}({u_1}(s)),{x_2}({u_2}(s)), \ldots ,{x_n}({u_n}(s)))\] with ${u_i}(t) \leqslant t$ and ${\lim _{t \to \infty }}{u_i}(t) = \infty$, the solutions of the integral equation \[ x\left ( t \right ) = h(t) + \int _0^t {q(t,s)f(s,x(s),x(u(s)))ds} \] satisfy the conditions $x(t) = h(t) + \rho (t)a(t),{\lim _{t \to \infty }}a(t) =$ constant where $\rho (t)$ is a nonsingular diagonal matrix chosen in such a way that ${\rho ^{ - 1}}(t)h(t)$ is bounded. The results contain, in particular, some results on the asymptotic behavior, stability and existence of nonoscillatory solutions of functional differential equations.

- Thomas G. Hallam,
*Asymptotic behavior of the solutions of an $n{\rm th}$ order nonhomogeneous ordinary differential equation*, Trans. Amer. Math. Soc.**122**(1966), 177â€“194. MR**188562**, DOI https://doi.org/10.1090/S0002-9947-1966-0188562-8 - A. F. IzĂ©,
*On an asymptotic property of a Volterra integral equation*, Proc. Amer. Math. Soc.**28**(1971), 93â€“99. MR**275078**, DOI https://doi.org/10.1090/S0002-9939-1971-0275078-0 - A. F. IzĂ©,
*Asymptotic integration of a nonhomogeneous singular linear system of ordinary differential equations*, J. Differential Equations**8**(1970), 1â€“15. MR**259256**, DOI https://doi.org/10.1016/0022-0396%2870%2990035-5
A. A. Freiria, - G. Ladas,
*Oscillation and asymptotic behavior of solutions of differential equations with retarded argument*, J. Differential Equations**10**(1971), 281â€“290. MR**291590**, DOI https://doi.org/10.1016/0022-0396%2871%2990052-0 - Pavol MaruĹˇiak,
*Note on the Ladasâ€™ paper on â€śOscillation and asymptotic behavior of solutions of differential equations with retarded argumentâ€ť (J. Differential Equations 10 (1971), 281â€“290) by G. Ladas*, J. Differential Equations**13**(1973), 150â€“156. MR**355266**, DOI https://doi.org/10.1016/0022-0396%2873%2990037-5 - Richard K. Miller,
*Nonlinear Volterra integral equations*, W. A. Benjamin, Inc., Menlo Park, Calif., 1971. Mathematics Lecture Note Series. MR**0511193** - J. A. Nohel,
*Some problems in nonlinear Volterra integral equations*, Bull. Amer. Math. Soc.**68**(1962), 323â€“329. MR**145307**, DOI https://doi.org/10.1090/S0002-9904-1962-10790-3 - Paul Waltman,
*On the asymptotic behavior of solutions of a nonlinear equation*, Proc. Amer. Math. Soc.**15**(1964), 918â€“923. MR**176170**, DOI https://doi.org/10.1090/S0002-9939-1964-0176170-8 - James A. Yorke,
*Selected topics in differential delay equations*, Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto, 1971) Springer, Berlin, 1971, pp. 16â€“28. Lecture Notes in Math., Vol. 243. MR**0435554**

*Sobre comportamento assintĂłtico e existĂŞncia de soluĂ§Ăµes nĂŁo oscilatĂłrias de uma classe de sistema de equaĂ§Ăµes diferencias com retardamento*, SĂŁo Carlos, 1972.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
34K15,
45M10

Retrieve articles in all journals with MSC: 34K15, 45M10

Additional Information

Keywords:
Volterra integral equations,
asymptotic properties,
almost all,
kernel,
asymptotic behavior,
uniform stability,
uniform asymptotic stability,
nonoscillation,
functional differential equation globally bounded

Article copyright:
© Copyright 1975
American Mathematical Society