## Asymptotic behavior and nonoscillation of Volterra integral equations and functional differential equations

HTML articles powered by AMS MathViewer

- by A. F. IzĂ© and A. A. Freiria
- Proc. Amer. Math. Soc.
**52**(1975), 169-177 - DOI: https://doi.org/10.1090/S0002-9939-1975-0377233-1
- PDF | Request permission

## Abstract:

It is proved that if ${q_{ij}}(t,s){\rho _j}(s){[{\rho _i}(t)]^{ - 1}}$ is bounded, $i,j = 1,2, \ldots ,n$, and $f(t,x,x(u(s)))$ is â€śsmall", \[ x(u(s)) = ({x_1}({u_1}(s)),{x_2}({u_2}(s)), \ldots ,{x_n}({u_n}(s)))\] with ${u_i}(t) \leqslant t$ and ${\lim _{t \to \infty }}{u_i}(t) = \infty$, the solutions of the integral equation \[ x\left ( t \right ) = h(t) + \int _0^t {q(t,s)f(s,x(s),x(u(s)))ds} \] satisfy the conditions $x(t) = h(t) + \rho (t)a(t),{\lim _{t \to \infty }}a(t) =$ constant where $\rho (t)$ is a nonsingular diagonal matrix chosen in such a way that ${\rho ^{ - 1}}(t)h(t)$ is bounded. The results contain, in particular, some results on the asymptotic behavior, stability and existence of nonoscillatory solutions of functional differential equations.## References

- Thomas G. Hallam,
*Asymptotic behavior of the solutions of an $n\textrm {th}$ order nonhomogeneous ordinary differential equation*, Trans. Amer. Math. Soc.**122**(1966), 177â€“194. MR**188562**, DOI 10.1090/S0002-9947-1966-0188562-8 - A. F. IzĂ©,
*On an asymptotic property of a Volterra integral equation*, Proc. Amer. Math. Soc.**28**(1971), 93â€“99. MR**275078**, DOI 10.1090/S0002-9939-1971-0275078-0 - A. F. IzĂ©,
*Asymptotic integration of a nonhomogeneous singular linear system of ordinary differential equations*, J. Differential Equations**8**(1970), 1â€“15. MR**259256**, DOI 10.1016/0022-0396(70)90035-5
A. A. Freiria, - G. Ladas,
*Oscillation and asymptotic behavior of solutions of differential equations with retarded argument*, J. Differential Equations**10**(1971), 281â€“290. MR**291590**, DOI 10.1016/0022-0396(71)90052-0 - Pavol MaruĹˇiak,
*Note on the Ladasâ€™ paper on â€śOscillation and asymptotic behavior of solutions of differential equations with retarded argumentâ€ť (J. Differential Equations 10 (1971), 281â€“290) by G. Ladas*, J. Differential Equations**13**(1973), 150â€“156. MR**355266**, DOI 10.1016/0022-0396(73)90037-5 - Richard K. Miller,
*Nonlinear Volterra integral equations*, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Menlo Park, Calif., 1971. MR**0511193** - J. A. Nohel,
*Some problems in nonlinear Volterra integral equations*, Bull. Amer. Math. Soc.**68**(1962), 323â€“329. MR**145307**, DOI 10.1090/S0002-9904-1962-10790-3 - Paul Waltman,
*On the asymptotic behavior of solutions of a nonlinear equation*, Proc. Amer. Math. Soc.**15**(1964), 918â€“923. MR**176170**, DOI 10.1090/S0002-9939-1964-0176170-8 - James A. Yorke,
*Selected topics in differential delay equations*, Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto, 1971) Lecture Notes in Math., Vol. 243, Springer, Berlin, 1971, pp.Â 16â€“28. MR**0435554**

*Sobre comportamento assintĂłtico e existĂŞncia de soluĂ§Ăµes nĂŁo oscilatĂłrias de uma classe de sistema de equaĂ§Ăµes diferencias com retardamento*, SĂŁo Carlos, 1972.

## Bibliographic Information

- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**52**(1975), 169-177 - MSC: Primary 34K15; Secondary 45M10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377233-1
- MathSciNet review: 0377233