Asymptotic behavior and nonoscillation of Volterra integral equations and functional differential equations
HTML articles powered by AMS MathViewer
- by A. F. Izé and A. A. Freiria
- Proc. Amer. Math. Soc. 52 (1975), 169-177
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377233-1
- PDF | Request permission
Abstract:
It is proved that if ${q_{ij}}(t,s){\rho _j}(s){[{\rho _i}(t)]^{ - 1}}$ is bounded, $i,j = 1,2, \ldots ,n$, and $f(t,x,x(u(s)))$ is “small", \[ x(u(s)) = ({x_1}({u_1}(s)),{x_2}({u_2}(s)), \ldots ,{x_n}({u_n}(s)))\] with ${u_i}(t) \leqslant t$ and ${\lim _{t \to \infty }}{u_i}(t) = \infty$, the solutions of the integral equation \[ x\left ( t \right ) = h(t) + \int _0^t {q(t,s)f(s,x(s),x(u(s)))ds} \] satisfy the conditions $x(t) = h(t) + \rho (t)a(t),{\lim _{t \to \infty }}a(t) =$ constant where $\rho (t)$ is a nonsingular diagonal matrix chosen in such a way that ${\rho ^{ - 1}}(t)h(t)$ is bounded. The results contain, in particular, some results on the asymptotic behavior, stability and existence of nonoscillatory solutions of functional differential equations.References
- Thomas G. Hallam, Asymptotic behavior of the solutions of an $n\textrm {th}$ order nonhomogeneous ordinary differential equation, Trans. Amer. Math. Soc. 122 (1966), 177–194. MR 188562, DOI 10.1090/S0002-9947-1966-0188562-8
- A. F. Izé, On an asymptotic property of a Volterra integral equation, Proc. Amer. Math. Soc. 28 (1971), 93–99. MR 275078, DOI 10.1090/S0002-9939-1971-0275078-0
- A. F. Izé, Asymptotic integration of a nonhomogeneous singular linear system of ordinary differential equations, J. Differential Equations 8 (1970), 1–15. MR 259256, DOI 10.1016/0022-0396(70)90035-5 A. A. Freiria, Sobre comportamento assintótico e existência de soluções não oscilatórias de uma classe de sistema de equações diferencias com retardamento, São Carlos, 1972.
- G. Ladas, Oscillation and asymptotic behavior of solutions of differential equations with retarded argument, J. Differential Equations 10 (1971), 281–290. MR 291590, DOI 10.1016/0022-0396(71)90052-0
- Pavol Marušiak, Note on the Ladas’ paper on “Oscillation and asymptotic behavior of solutions of differential equations with retarded argument” (J. Differential Equations 10 (1971), 281–290) by G. Ladas, J. Differential Equations 13 (1973), 150–156. MR 355266, DOI 10.1016/0022-0396(73)90037-5
- Richard K. Miller, Nonlinear Volterra integral equations, Mathematics Lecture Note Series, W. A. Benjamin, Inc., Menlo Park, Calif., 1971. MR 0511193
- J. A. Nohel, Some problems in nonlinear Volterra integral equations, Bull. Amer. Math. Soc. 68 (1962), 323–329. MR 145307, DOI 10.1090/S0002-9904-1962-10790-3
- Paul Waltman, On the asymptotic behavior of solutions of a nonlinear equation, Proc. Amer. Math. Soc. 15 (1964), 918–923. MR 176170, DOI 10.1090/S0002-9939-1964-0176170-8
- James A. Yorke, Selected topics in differential delay equations, Japan-United States Seminar on Ordinary Differential and Functional Equations (Kyoto, 1971) Lecture Notes in Math., Vol. 243, Springer, Berlin, 1971, pp. 16–28. MR 0435554
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 169-177
- MSC: Primary 34K15; Secondary 45M10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0377233-1
- MathSciNet review: 0377233