AN ALGORITHM FOR PARTITIONS

MELVYN B. NATHANSON

ABSTRACT. A class of algorithms is described to represent the positive integers as sums of elements in a prescribed sequence of integers, and results are obtained on the densities of the integers that can be represented by such partitions with a bounded number of summands.

Let \(1 = a_1 < a_2 < a_3 < \ldots \) be a strictly increasing sequence of positive integers, and let \(A = \{ a_i \} \). Every positive integer can be written in the form

\[
n = a_{i_1} + a_{i_2} + \cdots + a_{i_k},
\]

where the summands \(a_{i_j} \in A \) are chosen by the following "algorithm with \(p \) choices": If \(a_{i_1}, a_{i_2}, \ldots, a_{i_{k-1}} \) have been chosen, then \(a_{i_k} \) must be one of the \(p \) largest possible elements of \(A \), i.e. if \(a_{i_{k-1}} < n - (a_{i_1} + \cdots + a_{i_{k-1}}) \), then \(a_{i_k} \in \{ a_{i_1}, a_{i_2}, \ldots, a_{i_{k-1}} \} \). The number of summands in the shortest permissible partition (*) of \(n \) is called the \(p \)-length of \(n \), and denoted \(L_p(n) \). Let \(A^b_p \) be the set of all positive integers \(n \) such that \(L_p(n) \leq b \). Clearly, \(A^1_p = A \) for all \(p \), and \(A^b_p \subseteq A^{b+1}_p \) and \(A^b_p \subseteq A^{b+1}_p \) for all \(p \) and \(b \).

For example, let \(A = \{ i^2 \} \) be the sequence of squares. Then the "algorithm with 2 choices" gives four permissible partitions of 12, namely,

\[
9 + 1 + 1 + 1 = 4 + 4 + 4 = 4 + 4 + 1 + 1 + 1 = 4 + 1 + 1 + 1 + 1 + 1 + 1,
\]

and so \(L_2(12) = 3 \).

Katai [1] has studied the special case \(p = 1 \) when the representation (*) is unique.

Let \(S \) be any set of positive integers, and let \(S(N) \) denote the number of \(s \in S \) with \(s \leq N \). The lower asymptotic density of \(S \) is

\[
d(S) = \liminf_{N \to \infty} S(N)/N.
\]

The set \(S \) has density zero if \(\lim_{N \to \infty} S(N)/N = 0 \).

In this paper we study the densities of the sets \(A^b_p \). If \(A \) has density zero, then in Theorem 1 it is proved that all of the sets \(A^b_p \) have density zero. For example, if \(k \geq 2 \) and \(A \) is the sequence of \(k \)th powers, then Waring asserted and Hilbert proved that every positive integer is the sum of a bounded number of \(k \)th powers. But the sequence of \(k \)th powers has density zero.
zero, and so Theorem 1 shows that no algorithm with \(p \) choices is strong enough to settle Waring’s problem. In Theorem 2 a quantitative estimate is obtained for the size of \(A^h_p \) when \(A \) is a sequence distributed like the sequence of \(k \)th powers.

If \(A \) has positive lower asymptotic density, then \(A^h_p \) can be large. For example, if \(A = \{1, 2, \ldots, m - 1\} \cup \{m\} \), then \(A \) has density \(1/m \) and \(A^h_p \) is the set of all positive integers for any \(p \geq 1 \) and \(h \geq 2 \). We prove in Theorem 3 that if \(d(A) > 0 \), then \(\lim_{h \to \infty} d(A^h_p) = 1 \) for all \(p \).

If \(f \) and \(\phi \) are functions of \(n \), then \(f = O(\phi) \) means that there exists a constant \(c \) such that \(|f(n)| < c\phi(n) \) for all \(n \).

Theorem 1. If \(A = \{a_i\} \) has density zero, then \(A^h_p \) has density zero for all \(p \) and \(h \).

Proof. Fix \(p \). For \(M \geq a_p \), choose \(j \) so that \(a_p \leq a_{j-1} \leq M < a_j \); that is, \(j - 1 = A(M) \). Let \(h \geq 2 \). If \(a_{j-1} < n \leq M \), then \(n \in A^h_p \) if and only if \(n - a_{j-1} \in A^h_{p-1} \) for some \(i = 1, 2, \ldots, p \). But \(n - a_{j-1} \leq M - a_{j-1} \), and so the number of such \(n \) with \(n - a_{j-1} \in A^h_{p-1} \) is not more than \(A^h_{p-1}(M - a_{j-1}) \). Therefore,

\[
A^h_p(M) - A^h_p(a_{j-1}) \leq \sum_{i=1}^{p} A^h_{p-1}(M - a_{j-1}) \leq pA^h_{p-1}(M - a_{j-1}).
\]

Applying this inequality with \(M = a_j - 1 \), we obtain

\[
A^h_p(a_j) - A^h_p(a_{j-1}) = 1 + A^h_p(a_{j-1}) - A^h_p(a_{j-1}) \leq 1 + pA^h_{p-1}(a_j - a_{j-1})
\]

Let \(N \geq a_p \). Then

\[
A^h_p(N) = A^h_p(N) - A^h_p(a_1(N)) + \sum_{j=p+1}^{A(N)} (A^h_p(a_j) - A^h_p(a_{j-1})) + A^h_p(a_1(N)) \leq pA^h_{p-1}(N - a_1(N)) + \sum_{j=p+1}^{A(N)} A^h_{p-1}(a_j - a_{j-1}) + A(N) + A^h_p(a_1(N)).
\]

Let the sequence \(A \) have density zero. Clearly, \(A^1_p = A \), and so \(A^1_p \) has density zero. Suppose that \(A^h_{p-1} \) has density zero for some \(h \geq 2 \). Choose \(\epsilon > 0 \). Then there exists a constant \(M_0 \) such that \(A^h_{p-1}(M) \leq M\varepsilon/2p^2 \) for all \(M \geq M_0 \). Therefore, \(A^h_{p-1}(M) \leq M_0 + M\varepsilon/2p^2 \) for all \(M \). Let \(N \geq a_p \). By inequality (**), we have
AN ALGORITHM FOR PARTITIONS

\[A^h_p(N) \leq p A^h_{p-1}(N - a(N) - \rho + 1) + p \sum_{j=\rho+1}^{A(N)} A^h_{p-1}(a_j - a_{j-p}) + A(N) + A^h_p(a_p) \]

\[\leq p \left\{ M_0 \frac{(N - a(N) - \rho + 1) \epsilon}{2p^2} \right\} + p \sum_{j=\rho+1}^{A(N)} \left\{ M_0 \frac{(a_j - a_{j-p}) \epsilon}{2p^2} \right\} + A(N) + A^h_p(a_p) \]

\[\leq p M_0 A(N) + p \left\{ \frac{A(N)}{N} + \sum_{j=A(N)-\rho+2}^{A(N)} \frac{a_j}{\rho^2} + A^h_p(a_p) + A(N) \right\} \]

\[\leq p M_0 A(N) + N \epsilon/2 + A^h_p(a_p) + A(N). \]

Since \(A \) has density zero, there exists \(N_0 > a_p \) such that \(\lfloor (p M_0 + 1) A(N) + A^h_p(a_p) \rfloor < N \epsilon/2 \) for all \(N \geq N_0 \). Then \(A^h_p(N)/N < \epsilon \) for all \(N \geq N_0 \), and so \(A^h_p \) has density zero. The theorem follows by induction on \(h \).

Theorem 2. If \(A = \{a_i\} \) satisfies:

(i) \(A(N) = O(N^{1-\theta}) \) for \(0 < \theta < 1 \),

(ii) \(a_i - a_{i-1} = O(i^\mu) \) for \(\mu > 1 \), and

(iii) \((1 + \mu)(1 - \theta) \leq 1 \),

then \(A^h_p(N) = O(N^{1-\rho h}) \), where the implied constant depends on \(p \) and \(h \).

Proof. Let \(a_0 = 0 \). Then \(N \leq \sum_{i=1}^{A(N)+1} (a_i - a_{i-1}) \), and so, by (i) and (ii), we have \(N \leq c A(1-\theta)(1+\mu) \) for some constant \(c \). It follows that \((1 - \theta)(1 + \mu) \geq 1 \), and so, by (iii), we have \(\mu = \theta/(1 - \theta) \). Clearly, \(A^1_p(N) = A(N) = O(N^{1-\theta}) \) and so the theorem holds for \(h = 1 \). Suppose that \(A^h_{p-1}(N) = O(N^{1-\rho h-1}) \) for some \(h \geq 2 \). If \(a_j - a_{j-1} = O(i^\mu) \), then \(a_j - a_{j-p} = O(i^\mu) \), where the implied constant depends on \(p \). By inequality (***) we have

\[A^h_p(N) \leq p \sum_{j=\rho+1}^{A(N)+1} A^h_{p-1}(a_j - a_{j-p}) + A(N) + A^h_p(a_p) \]

\[\leq p \sum_{j=\rho+1}^{A(N)+1} A^h_{p-1}(O(j^\mu)) + O(N^{1-\theta}) \]

\[\leq \sum_{j=\rho+1}^{A(N)+1} O(j^{\mu(1-\rho h-1)}) + O(N^{1-\theta}) \]

\[\leq A(N) O(A(N)^{\mu(1-\rho h-1)}) + O(N^{1-\theta}) \]

\[< O(N^{1-\theta}) O(N^{(1-\theta)(1-\rho h-1)}) = O(N^{1-\rho h}). \]

The theorem follows by induction on \(h \).
Note that if \(A \) is the sequence of \(k \)th powers, then \(A(N) = O(N^{1/k}) = O(N^{1-(k-1)/k}) \) and \(i^k - (i-1)^k = O(i^{k-1}) \).

Theorem 3. If \(d(A) > 0 \), then \(\lim_{h \to \infty} d(A_p^h) = 1 \) for all \(p \).

Proof. Since \(d(A) > 0 \) and \(a_1 = 1 \), there exists \(\alpha > 0 \) such that \(A(N)/N > \alpha \) for all \(N \). In this case, Katai [1] has proved that for all \(p \) and \(N \),

\[
\alpha \sum_{n=1}^{N} L_p(n) \leq N.
\]

But also

\[
\alpha h(N - A_p^h(N)) \leq \alpha \sum_{n=1}^{N} L_p(n).
\]

Let \(\epsilon > 0 \), and choose \(h > 1/(\alpha \epsilon) \). Then

\[
A_p^h(N)/N \geq 1 - 1/\alpha h > 1 - \epsilon
\]

for all \(N \). Then \(d(A_p^h) \geq 1 - \epsilon \) for all \(h \geq 1/(\alpha \epsilon) \), and so \(\lim_{h \to \infty} d(A_p^h) = 1 \).

REFERENCE

SCHOOL OF MATHEMATICS, THE INSTITUTE FOR ADVANCED STUDY, PRINCETON, NEW JERSEY 08540

DEPARTMENT OF MATHEMATICS, SOUTHERN ILLINOIS UNIVERSITY, CARBONDALE, ILLINOIS 62901

Current address: Department of Mathematics, Brooklyn College (CUNY) Brooklyn, New York 11210