ON THE INFINITE DIMENSIONALITY OF THE DOLBEAULT COHOMOLOGY GROUPS

HENRY B. LAUFER

ABSTRACT. Let M be an open subset of a Stein manifold without isolated points. Let \mathcal{O}^p be the sheaf of germs of holomorphic p-forms on M. Then $H^q(M, \mathcal{O}^p)$ is either 0 or else infinite dimensional. $H^q(M, \mathcal{S})$ may be nonzero and finite dimensional if M is the regular points of a Stein space or if \mathcal{S} is an arbitrary coherent sheaf over M.

Let M be a complex manifold. Let Ω^p be the sheaf of germs of holomorphic p-forms over M. If M is a Stein manifold, then $H^q(M, \Omega^p) = 0$ for $q > 1$ [3, VIII.A, 14, Cartan's Theorem B, p. 243] while $H^0(M, \Omega^p)$ is an infinite dimensional Fréchet space, so long as M does not consist of a finite number of points. If M is a compact manifold, then $H^q(M, \Omega^p)$ is finite dimensional for all p and all q [3, VIII.A, 10, p. 245]. In this paper, we shall examine the possible dimensions for $H^q(M, \Omega^p)$, the Dolbeault cohomology groups, under the assumption that M is an open subset of a Stein manifold and that M does not have any isolated points. By considering the natural topology on $H^q(M, \Omega^p)$ Siu showed [7, Theorem A, p. 17], under much more general assumptions, that $H^q(M, \Omega^p)$ cannot be countably infinite dimensional. The topology on $H^q(M, \Omega^p)$ is that induced from the topology of uniform convergence on compact sets for all derivatives for C^∞ differential forms. $H^q(M, \Omega^p)$ is then a linear topological space. Let R^p,q be the closure of 0 in $H^q(M, \Omega^p)$. Then $H^q(M, \Omega^p)/R^p,q$ is a separable Fréchet space. Siu essentially showed that R^p,q cannot be countably infinite dimensional. The main result of this paper is that $H^q(M, \Omega^p)/R^p,q$ is either 0 or infinite dimensional. The author previously proved a special case in [5, Theorem 4.5, p. 431]. Some examples are given which show that some special assumptions about M and about the sheaf are needed.

Let $E^{p,q}$ be the C^∞ differential forms on M of type (p, q). If f is a holomorphic function on M, then f operates on $E^{p,q}$ via multiplication. We shall also denote this endomorphism of $E^{p,q}$ by f. Let λ be a holomorphic vector field on M, i.e., a section of the dual sheaf to Ω^1. Then λ induces a map, also denoted by $\lambda, \lambda: E^{p,q} \rightarrow E^{p-1,q}$ given by contraction, thinking of...
the vector field λ and elements of $E^{p,q}$ and $E^{p-1,\overline{q}}$ as tensors. In local coordinates, if
\[
\lambda = \sum \lambda_k(z) \frac{\partial}{\partial z_k}, \quad 1 \leq k \leq n,
\]
and $\omega \in E^{p,q}$ is given by
\[
\omega = \sum \omega_{I,J}(z) dz^I \wedge d\overline{z}^J,
\]
where the summation is over the multi-indices $I = (i_1, \ldots, i_p)$, $i_1 < \cdots < i_p$, and $J = (j_1, \ldots, j_q)$, $j_1 < \cdots < j_q$, then
\[
\lambda(\omega) = \sum (-1)^{\epsilon+1} \lambda_k(z) \omega_{I,J}(z) dz^{I'} \wedge d\overline{z}^{J'}
\]
where the summation is over $1 \leq k \leq n$, $I = (j_1, \ldots, j_q)$ and $J = (i_1, \ldots, i_p)$ such that $k \in I$. I' is obtained from I by deleting k. ϵ is given by $l \ni k$, $k = i_\epsilon$. The map λ commutes with the map f.

Let $D: E^{p,q} \rightarrow E^{p,q}$ be given by $D = \partial \circ \lambda + \lambda \circ \partial$. The following lemma is true for any complex manifold. ∂f is a holomorphic 1-form and $\lambda(\partial f)$ is the function obtained by the usual operation of a vector field λ on a function f.

Lemma. Let $D = \partial \circ \lambda + \lambda \circ \partial$. Then $D \circ f = f \circ D = \lambda(\partial f)$.

Proof. Let $\omega \in E^{p,q}$.

\[
D \circ f - f \circ D = \partial f \wedge \lambda(\omega) + \lambda(\partial f \wedge \omega).
\]

The right side of (3) is C^∞-linear in ω and C^∞-linear in λ. So to complete the verification of the Lemma, it suffices to evaluate the right side of (3) in local coordinates with $\lambda = \partial/\partial z_l$ and $\omega = dz^I \wedge d\overline{z}^J$. There are two cases, $l \notin l$ and $1 = i_1 \in l = (i_1, \ldots, i_p)$.

For $l \notin l$: $\lambda(\omega) = 0$ and $\lambda(\partial f \wedge \omega) = \partial f / \partial z_l \wedge \omega$, as needed.

For $1 \in l$: $\lambda(\omega) = dz^{I'} \wedge d\overline{z}^J$ where $I' = (i_2, \ldots, i_p)$.

\[
\partial f \wedge \lambda(\omega) = \sum \frac{\partial f}{\partial z_k} dz^k \wedge dz^{I'} \wedge d\overline{z}^J, \quad k \notin I',
\]
\[
\partial f \wedge \omega = \sum \frac{\partial f}{\partial z_k} dz^k \wedge dz^I \wedge d\overline{z}^J, \quad k \notin l.
\]
\begin{align}
\lambda(\partial f \wedge \omega) &= \sum (-1)^k \frac{\partial f}{\partial z_{k}} \, dz^k \wedge dz^i \wedge \overline{dz}^j, \quad k \neq l.
\end{align}

Theorem. Let \(M \) be an open subset of a Stein manifold having no isolated points. Then, for any \(p \) and \(q \), \(H^q(M, \Omega^p) \) is either 0 or else infinite dimensional. Let \(R^{p,q} \) be the closure of 0 in \(H^q(M, \Omega^p) \). Then \(H^q(M, \Omega^p)/R^{p,q} \) is either 0 or else infinite dimensional.

Proof. The proof for \(H^q(M, \Omega^p) \) is exactly like that for \(H^q(M, \Omega^p)/R^{p,q} \), leaving out topological considerations; therefore we omit it.

For the sake of notational simplicity, let \(H = H^q(M, \Omega^p)/R^{p,q} \). We shall show that if \(H \) is finite dimensional, then \(H = 0 \). For \(f \) holomorphic on \(M \), the action of \(f \) on \(E^{p,q} \) is continuous and commutes with \(\overline{\partial} \). Thus, \(f \) induces a continuous endomorphism on \(H^q(M, \Omega^p) \) and on \(H \).

Without loss of generality, we may assume that \(M \) is a subset of a connected Stein manifold \(S \) of dimension \(n > 0 \). Let \(I \) be the set of holomorphic functions on \(S \) which, after restriction to \(M \), induce the zero map of \(H \) to itself. It suffices to show that \(1 \in I \). Let \(z_1, \ldots, z_{2n+1} \) be holomorphic functions on \(S \) which separate points [3, Theorem VII.C.10, p. 224]. Each \(z_i \) acts on \(H \) and so has a minimal polynomial \(p_i(z_i) \), under the finite dimensional assumption on \(H \). \(p_i(z_i) \in I \). \(p_i(z_i) \) has only a finite number of roots in \(z_i \). So the common zeros on \(S \) for \(p_1(z_1), \ldots, p_{2n+1}(z_{2n+1}) \) consist of only a finite number of points, say \(P_1, \ldots, P_N \), in \(S \).

\(\partial : E^{p,q} \to E^{p+1,q} \) is continuous and anticommutes with \(\overline{\partial} \). If \(\lambda \) is a holomorphic vector field on \(S \), then \(\lambda : E^{p,q} \to E^{p-1,q} \) is continuous and commutes with \(\overline{\partial} \). So \(\lambda \circ \partial \) and \(\partial \circ \lambda \) both induce endomorphisms of \(H \). The Lemma also holds for the induced maps on \(H \). Thus, if \(f \in I \), then also \(\lambda(\partial f) \in I \). Consider a \(P_j \in S \) from above. Let \(f \in I \) have a zero at \(P_j \) of minimal total order. \(f \neq 0 \) since \(p_i(z_i) \in I \). We claim that \(f(P_j) \neq 0 \), for suppose otherwise. Since \(S \) is a Stein manifold of positive dimension, by an application of Cartan's Theorem B, we can specify the tangent vector at \(P_j \) for a vector field \(\lambda \) on \(S \). For a suitable choice for \(\lambda \), \(\lambda(\partial f) \) will have a zero of lower total order at \(P_j \) than has \(f \). So for each \(P_j \), there exists an \(f_j \in I \) such that \(f_j(P_j) \neq 0 \). \(p_1(z_1), \ldots, p_{2n+1}(z_{2n+1}) \), \(f_1, \ldots, f_N \) are then elements of \(I \) with no common zeroes. By [3, Corollary VIII.A.16, p. 244] there exist holomorphic functions \(\{g_k\} \) on \(S \) such that \(\sum g_i p_i(z_i) + \sum g_j f_j = 1 \). Thus \(1 \in I \) and \(H = 0 \), as desired.

The Theorem does not hold under the weaker assumption that \(M \) is an open subset of a Stein space, even if \(M \) itself is a manifold. Consider, for example, a Riemann surface \(R \) of genus at least 1 embedded as the 0-section
of a negative vector bundle V of rank 4. See [2]. V can be taken to be the direct sum of 4 line bundles, each of negative Chern class. Let $\mathcal{O} = \Omega^0$ be the sheaf of germs of holomorphic functions. Then $H^1(V, \mathcal{O}) \neq 0$ since $H^1(V, \mathcal{O})$ may be expanded in a power series along the fibers [2, pp. 343–344]. Also, $H^1(V, \mathcal{O})$ is finite dimensional since V is strictly pseudoconvex [1, Theorem 11, p. 239]. Let $M = V - R$. Then the restriction map induces an isomorphism $H^1(V, \mathcal{O}) \cong H^1(M, \mathcal{O})$ by [6, Corollary, p. 351]. Thus $H^1(M, \mathcal{O})$ is nonzero and finite dimensional. By blowing down R to a point p, we obtain a Stein space S with M the complement of the singular point p.

This example also shows that Ω^p in the Theorem cannot be replaced by an arbitrary coherent sheaf. Namely, near p, S may be embedded as a subvariety X of a polydisc Δ.

\[H^1(S - p, \mathcal{O}) \cong H^1(X - p, \mathcal{O}) \text{ by [4, Theorem 2.2, p. 105].} \]

$X^\mathcal{O}$ is a coherent sheaf on Δ, but $H^1(\Delta - p, X^\mathcal{O})$ is nonzero and finite dimensional.

BIBLIOGRAPHY