## Oscillation properties of perturbed disconjugate equations

HTML articles powered by AMS MathViewer

- by William F. Trench PDF
- Proc. Amer. Math. Soc.
**52**(1975), 147-155 Request permission

## Abstract:

Oscillation conditions are given for the equation ${L_u} + f(t,u) = 0$, where \[ Lu = \frac {1} {{{\beta _n}}}\frac {d} {{dt}}\frac {1} {{{\beta _{n - 1}}}} \cdots \frac {d} {{dt}}\frac {1} {{{\beta _1}}}\frac {d} {{dt}}\frac {u} {{{\beta _0}}}(n \geqslant 2),\] with ${\beta _0}, \ldots ,{\beta _n}$ positive and continuous on $(0,\infty ),\int {^\infty {\beta _i}dt = \infty (1 \leqslant i \leqslant n - 1)}$, and $f$ subject to conditions which include $uf(t,u) \geqslant 0$. The results obtained include previously known oscillation conditions for the equation ${u^{(n)}} + f(t,u) = 0$ for both linear and nonlinear cases.## References

- G. V. Anan′eva and V. I. Balaganskiĭ,
*Oscillation of the solutions of certain differential equations of high order*, Uspehi Mat. Nauk**14**(1959), no. 1 (85), 135–140 (Russian). MR**0102638** - G. A. Bogar,
*Oscillation properties of two term linear differential equations*, Trans. Amer. Math. Soc.**161**(1971), 25–33. MR**284646**, DOI 10.1090/S0002-9947-1971-0284646-6 - William Benjamin Fite,
*Concerning the zeros of the solutions of certain differential equations*, Trans. Amer. Math. Soc.**19**(1918), no. 4, 341–352. MR**1501107**, DOI 10.1090/S0002-9947-1918-1501107-2 - Philip Hartman,
*Principal solutions of disconjugate $n-\textrm {th}$ order linear differential equations*, Amer. J. Math.**91**(1969), 306–362. MR**247181**, DOI 10.2307/2373512 - A. G. Kartsatos,
*Oscillation properties of solutions of even order differential equations*, Bull. Fac. Sci. Ibaraki Univ. Ser. A**2-1**(1969), 9–14 (1969). MR**254327**, DOI 10.5036/bfsiu1968.2.9 - Adolf Kneser,
*Untersuchungen über die reellen Nullstellen der Integrale linearer Differentialgleichungen*, Math. Ann.**42**(1893), no. 3, 409–435 (German). MR**1510784**, DOI 10.1007/BF01444165 - A. Ju. Levin,
*The non-oscillation of solutions of the equation $x^{(n)}+p_{1}(t)x^{(n-1)}+\cdots +p_{n} (t)x=0$*, Uspehi Mat. Nauk**24**(1969), no. 2 (146), 43–96 (Russian). MR**0254328** - Imrich Ličko and Marko Švec,
*Le caractère oscillatoire des solutions de l’équation $y^{(n)}+f(x)y^{\alpha }=0,\,n>1$*, Czechoslovak Math. J.**13(88)**(1963), 481–491 (French, with Russian summary). MR**161001** - Jack W. Macki and James S. W. Wong,
*Oscillation of solutions to second-order nonlinear differential equations*, Pacific J. Math.**24**(1968), 111–117. MR**224908** - Zeev Nehari,
*Non-oscillation criteria for $n-th$ order linear differential equations*, Duke Math. J.**32**(1965), 607–615. MR**186883** - G. Pólya,
*On the mean-value theorem corresponding to a given linear homogeneous differential equation*, Trans. Amer. Math. Soc.**24**(1922), no. 4, 312–324. MR**1501228**, DOI 10.1090/S0002-9947-1922-1501228-5 - Gerald H. Ryder and David V. V. Wend,
*Oscillation of solutions of certain ordinary differential equations of $n\textrm {th}$ order*, Proc. Amer. Math. Soc.**25**(1970), 463–469. MR**261091**, DOI 10.1090/S0002-9939-1970-0261091-5 - William F. Trench,
*Canonical forms and principal systems for general disconjugate equations*, Trans. Amer. Math. Soc.**189**(1973), 319–327. MR**330632**, DOI 10.1090/S0002-9947-1974-0330632-X - D. Willett,
*Asymptotic behaviour of disconjugate $n$th order differential equations*, Canadian J. Math.**23**(1971), 293–314. MR**293196**, DOI 10.4153/CJM-1971-030-4

## Additional Information

- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**52**(1975), 147-155 - MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9939-1975-0379987-7
- MathSciNet review: 0379987