The maps $B\textrm {Sp}(1)\rightarrow B\textrm {Sp}(n)$
HTML articles powered by AMS MathViewer
- by Zafer Mahmud
- Proc. Amer. Math. Soc. 52 (1975), 473-478
- DOI: https://doi.org/10.1090/S0002-9939-1975-0380794-X
- PDF | Request permission
Abstract:
Let $Sp(n)$ be the symplectic Lie group. Then it is known that given a map $f:BSp(1) \to BSp(1),{f^{\ast }}:{H^4}(BSp(1),{\mathbf {Z}}) \to {H^4}(BSp(1),{\mathbf {Z}})$ is zero or multiplication by the square of an odd integer. We generalise the latter part of this result using symplectic ${K^{\ast }}$-theory.References
- J. F. Adams, Vector fields on spheres, Ann. of Math. (2) 75 (1962), 603β632. MR 139178, DOI 10.2307/1970213
- J. Frank Adams, Lectures on Lie groups, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0252560 J. F. Adams and Z. Mahmud, Classification of maps $BG \to BGβ$ (in preparation).
- M. F. Atiyah and F. Hirzebruch, Vector bundles and homogeneous spaces, Proc. Sympos. Pure Math., Vol. III, American Mathematical Society, Providence, R.I., 1961, pp.Β 7β38. MR 0139181
- Armand Borel, Topics in the homology theory of fibre bundles, Lecture Notes in Mathematics, No. 36, Springer-Verlag, Berlin-New York, 1967. Lectures given at the University of Chicago, 1954; Notes by Edward Halpern. MR 0221507, DOI 10.1007/BFb0096867
- Conference on Algebraic Topology, University of Illinois at Chicago Circle, Chicago, Ill., 1969. The University of Illinois at Chicago Circle, June 17-June 28, 1968. MR 0248800
- Hans Samelson, Notes on Lie algebras, Van Nostrand Reinhold Mathematical Studies, No. 23, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969. MR 0254112
- N. E. Steenrod, Milgramβs classifying space of a topological group, Topology 7 (1968), 349β368. MR 233353, DOI 10.1016/0040-9383(68)90012-8
Bibliographic Information
- © Copyright 1975 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 52 (1975), 473-478
- MSC: Primary 55F40
- DOI: https://doi.org/10.1090/S0002-9939-1975-0380794-X
- MathSciNet review: 0380794